biologia plantarum

International journal on Plant Life established by Bohumil Němec in 1959

Biologia plantarum 58:355-362, 2014 | DOI: 10.1007/s10535-013-0384-3

Radio-frequency electromagnetic radiation alters the electric potential of Myriophyllum aquaticum

M. D. H. J. Senavirathna1, T. Asaeda1,*
1 Department of Environmental Science and Technology, Saitama University, Saitama City, Saitama, Japan

Electric signaling pathways are important for rapid and long-distance communication within a plant. Changes in the electric potential (EP) inside plants have been observed during the propagation of electric signals. Increasing radiofrequency electromagnetic radiation (EMR) in the environment raise the question about possible effects of EMR on the EP of plants. In the present experiment, we investigated the effect of 2, 2.5, 3.5, and 5.5 GHz EMR with a maximum field intensity of 23-25 V m-1 on the EP in emergent Myriophyllum aquaticum plants. The 2 and 5.5 GHz exposures caused significant (16 and 13 %) decreases in the standard deviation of rapid fluctuations observed in the EP. The greatest change was caused by 2.5 GHz EMR (23 % increment), although it was not statistically significant. A recovery of the EP was only after 2.5 GHz EMR exposure. The temperature of the plants was not changed by the EMR exposure. These findings confirm the frequency-dependent non-thermal effects of EMR on the EP of plants.

Keywords: communication technology; electric field; microelectrodes; parrot feather; plant signaling
Subjects: electromagnetic radiation; electric potential; microelectrodes; plant signaling; parrot feather

Received: April 24, 2013; Revised: July 26, 2013; Accepted: August 9, 2013; Published: June 1, 2014  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Senavirathna, M.D.H.J., & Asaeda, T. (2014). Radio-frequency electromagnetic radiation alters the electric potential of Myriophyllum aquaticum. Biologia plantarum58(2), 355-362. doi: 10.1007/s10535-013-0384-3
Download citation

References

  1. Baluąka, F., Mancuso, S., Volkmann, D., Barlow, P.: Root apices as plant command centres: the unique "brain-like" status of the root apex transition zone. - Biológia 59: 7-19, 2004.
  2. Bush, D.S.: Calcium regulation in plant-cells and its role in signaling. - Annu. Rev. Plant Physiol. Plant mol. Biol. 46: 95-122, 1995. Go to original source...
  3. Challis, L.J.: Mechanisms for interaction between RF fields and biological tissue. - Bioelectromagnetics S7: S98-S106, 2005. Go to original source...
  4. Christmann, A., Weiler, E.W., Steudle, E., Grill, E.: A hydraulic signal in root-to-shoot signalling of water shortage. - Plant J. 52: 167-174, 2007. Go to original source...
  5. Clark, W.G.: Electrical polarity and auxin transport. - Plant Physiol 12: 409-440, 1937a. Go to original source...
  6. Clark, W.G.: Polar transport of auxin and electrical polarity in coleoptile of Avena. - Plant Physiol. 12: 737-754, 1937b. Go to original source...
  7. Comstock, J.P.: Hydraulic and chemical signalling in the control of stomatal conductance and transpiration. - J. exp. Bot. 53: 195-200, 2002. Go to original source...
  8. Copty, A.B., Neve-Oz, Y., Barak, I., Golosovsky, M., Davidov, D.: Evidence for a specific microwave radiation effect on the green fluorescent protein. - Biophys. J. 91: 1413-1423, 2006. Go to original source...
  9. Fromm, J., Bauer, T.: Action-potentials in maize sieve tubes change phloem translocation. - J. exp. Bot. 45: 463-469, 1994. Go to original source...
  10. Fromm, J., Fei, H.M.: Electrical signaling and gas exchange in maize plants of drying soil. - Plant Sci. 132: 203-213, 1998. Go to original source...
  11. Fromm, J., Lautner, S.: Electrical signals and their physiological significance in plants. - Plant Cell Environ. 30: 249-257, 2007. Go to original source...
  12. Gechev, T.S., Van Breusegem, F., Stone, J.M., Denev, I., Laloi, C.: Reactive oxygen species as signals that modulate plant stress responses and programmed cell death. - Bioessays 28: 1091-1101, 2006. Go to original source...
  13. Herde, O., Cortes, H.P., Wasternack, C., Willmitzer, L., Fisahn, J.: Electric signaling and Pin2 gene expression on different abiotic stimuli depend on a distinct threshold level of endogenous abscisic acid in several abscisic acid-deficient tomato mutants. - Plant Physiol. 119: 213-218, 1999. Go to original source...
  14. Hyland, G.: How exposure to mobile phone base-station signals can adversely affect humans. - http://www.tetrawatch.net/papers/hyland_2005.
  15. Ilík, P., Hlaváčková, V., Krchňák, P., Nauą, J.: A low-noise multi-channel device for the monitoring of systemic electrical signal propagation in plants. - Biol. Plant. 54: 185-190, 2010. Go to original source...
  16. Jacob, J., Chia, L.H.L., Boey, F.Y.C.: Thermal and non-thermal interaction of microwave radiation with materials. - J. Materials Sci. 30: 5321-5327, 1995. Go to original source...
  17. Kobayashi, K., Kadono, H.: Expansion of the dynamic range of statistical interferometry and its application to extremely short-to long-term plant growth monitoring. - Appl. Optics 49: 6333-6339, 2010. Go to original source...
  18. Krol, E., Dziubinska, H., Stolarz, M., Trebacz, K.: Effects of ion channel inhibitors on cold- and electrically-induced action potentials in Dionaea muscipula. - Biol. Plant. 50: 411-416, 2006. Go to original source...
  19. Lautner, S., Grams, T.E., Matyssek, R., Fromm, J.: Characteristics of electrical signals in poplar and responses in photosynthesis. - Plant Physiol. 138: 2200-2209, 2005. Go to original source...
  20. León, J., Rojo, E., Sánchez-Serrano, J.J.: Wound signalling in plants. - J. exp. Bot. 52: 1-9, 2001. Go to original source...
  21. Mancuso, S., Mugnai, S.: Long-distance signal transmission in trees. - In: Baluąka, F., Mancuso, S., Volkmann, D. (ed.): Communication in Plants. Pp. 333-349. Springer, Berlin - Heidelberg 2006. Go to original source...
  22. Mina, M.G., Goldsworthy, A.: Changes in the electrical polarity of tobacco cells following the application of weak external currents. - Planta 186: 104-108, 1991. Go to original source...
  23. Oyarce, P., Gurovich, L.: Electrical signals in avocado trees: responses to light and water availability conditions. - Plant Signal. Behav. 5: 34-41, 2010. Go to original source...
  24. Roux, D., Vian, A., Girard, S., Bonnet, P., Paladian, F., Davies, E., Ledoigt, G.: Electromagnetic fields (900 MHz) evoke consistent molecular responses in tomato plants. - Physiol. Plant. 128: 283-288, 2006. Go to original source...
  25. Seo, S., Sano, H., Ohashi, Y.: Jasmonic acid in wound signal transduction pathways. - Physiol. Plant. 101: 740-745, 1997. Go to original source...
  26. Sharma, V.P., Singh, H.P., Kohli, R.K., Batish, D.R.: Mobile phone radiation inhibits Vigna radiata (mung bean) root growth by inducing oxidative stress. - Sci. Total Environ. 407: 5543-5547, 2009. Go to original source...
  27. Shiina, T., Tazawa, M.: Action-potential in Luffa cylindlica and its effects on elongation growth. - Plant Cell Physiol. 27: 1081-1089, 1986.
  28. Stahlberg, R., Cosgrove, D.J.: The propagation of slow wave potentials in pea epicotyls. - Plant Physiol. 113: 209-217, 1997. Go to original source...
  29. Stanković, B., Davies, E.: Intercellular communication in plants: electrical stimulation of proteinase inhibitor gene expression in tomato. - Planta 202: 402-406, 1997. Go to original source...
  30. Stankovic, B., Zawadzki, T., Davies, E.: Characterization of the variation potential in sunflower. - Plant Physiol. 115: 1083-1088, 1997. Go to original source...
  31. Tang, A.C., Boyer, J.S.: Xylem tension affects growth-induced water potential and daily elongation of maize leaves. - J. exp. Bot. 59: 753-764, 2008. Go to original source...
  32. Tkalec, M., Malaric, K.I., Pevalek-Kozlina, B.: Influence of 400, 900, and 1900 MHz electromagnetic fields on Lemna minor growth and peroxidase activity. - Bioelectromagnetics 26: 185-193, 2005. Go to original source...
  33. Tkalec, M., Malaric, K., Pevalek-Kozlina, B.: Exposure to radiofrequency radiation induces oxidative stress in duckweed Lemna minor L. - Sci. Total Environ. 388: 78-89, 2007. Go to original source...
  34. Volkov, A., Ranatunga, D.: Plants as environmental biosensors. - Plant Signal. Behav. 1: 105-115, 2006. Go to original source...
  35. Volkov, A.G., Carrell, H., Adesina, T., Markin, V.S., Jovanov, E.: Plant electrical memory. - Plant Signal. Behav. 3: 490-492, 2008. Go to original source...
  36. Zimmermann, M. R., Maischak, H., Mithofer, A., Boland, W., Felle, H.H.: System potentials, a novel electrical longdistance apoplastic signal in plants, induced by wounding. - Plant Physiol. 149: 1593-1600, 2009. Go to original source...
  37. Zimmermann, S., Ehrhardt, T., Plesch, G., Muller-Rober, B.: Ion channels in plant signaling. - Cell. Mol. Life Sci. 55: 183-203, 1999. Go to original source...