Photosynthetica 2005, 43(4):583-589 | DOI: 10.1007/s11099-005-0091-1

Combined effects of elevated UV-B radiation and the addition of selenium on common (Fagopyrum esculentum Moench) and tartary [Fagopyrum tataricum (L.) Gaertn.] buckwheat

B. Breznik1, M. Germ2, A. Gaberscik1, I. Kreft3
1 Department of Biology, Biotechnical Faculty, Ljubljana, Slovenia
2 National Institute of Biology, Ljubljana, Slovenia
3 Department of Agronomy, Biotechnical Faculty, Ljubljana, Slovenia

The combined effects of UV-B irradiation and foliar treatment with selenium on two buckwheat species, common (Fagopyrum esculentum Moench) and tartary [Fagopyrum tataricum (L.) Gaertn.] buckwheat, that underwent different intensity of breeding, were examined. Plants grown outdoors under three levels of UV-B radiation were studied for 9 weeks, from sowing to ripening. At week 7 they were sprayed with solution containing 1 g(Se) m-3 that presumably mitigates UV-B stress. Morphological, physiological, and biochemical parameters of the plants were monitored. Elevated UV-B radiation, corresponding to a 17 % reduction of the ozone layer, induced synthesis of UV absorbing compounds. In both buckwheat species it also caused a reduction in amounts of chlorophyll a during the time of intensive growth, an effect, which was increased in tartary buckwheat in the presence of selenium. The respiratory potential, measured as terminal electron transport system activity, was lower in plants subjected to enhanced UV-B radiation during the time of intensive growth. The effective quantum yield of photosystem 2 was also reduced due to UV-B radiation in both buckwheat species and was mitigated by the addition of Se. Se treatment also mitigated the stunting effect of UV-B radiation and the lowering of biomass in common buckwheat.

Additional key words: biomass; chlorophyll; energy conversion; leaf area and thickness; plant height; UV-A

Received: January 17, 2005; Accepted: April 4, 2005; Published: December 1, 2005  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Breznik, B., Germ, M., Gaberscik, A., & Kreft, I. (2005). Combined effects of elevated UV-B radiation and the addition of selenium on common (Fagopyrum esculentum Moench) and tartary [Fagopyrum tataricum (L.) Gaertn.] buckwheat. Photosynthetica43(4), 583-589. doi: 10.1007/s11099-005-0091-1
Download citation

References

  1. Amthor, J.S.: Higher plant respiration and its relationship to photosynthesis. - In: Schulze, E.D., Caldwell, M.M. (ed.): Ecophysiology of Photosynthesis. Pp. 71-101. Springer-Verlag, Berlin - Heidelberg - New York 1995. Go to original source...
  2. Antonelli, F., Grifoni, D., Sabatini, F., Zipoli, G.: Morphological and physiological responses of bean plants to supplemental UV-B radiation in a Mediterranean climate. - Plant Ecol. 128: 127-136, 1997. Go to original source...
  3. Ballare, C.L., Scopel, A.L., Stapelton, A.E., Yanovsky, M.J.: Solar ultraviolet-B radiation affects emergence, DNA integrity, plant morphology, growth rate, and attractiveness to herbivore insects in Datura ferox. - Plant Physiol. 112: 161-170, 1996. Go to original source...
  4. Bjorn, L.O.: UV-B effects: receptors and targets. - In: Singhal, G.S., Renger, G., Sopory, S.K., Irrgang, K.-D., Govindjee (ed.): Concepts in Photobiology: Photosynthesis and Photomorphogenesis. Narosa Publishing House, New Delhi 1999.
  5. Bjorn, L.O., Murphy, T.M.: Computer calculation of solar ultraviolet radiation at ground level. - Physiol. veg. 23: 555-561, 1985.
  6. Bjorn, L.O., Teramura, A.H.: Simulation of daylight ultraviolet radiation and effects of ozone depletion. - In: Young, A.R., Bjorn, L.O., Moan, J., Nultsch, W. (ed.): Environmental UV Photobiology. Pp. 40-71. Plenum Press, New York - London 1993. Go to original source...
  7. Bonafaccia, G., Marocchini, M., Kreft, I.: Composition and technological properties of the flour and bran from common and tartary buckwheat. - Food Chem. 80: 9-15, 2003. Go to original source...
  8. Bornman, J.F., Vogelmann, T.C.: Effect of UV-B radiation on leaf optical properties measured with fibre optics. - J. exp. Bot. 42: 547-554, 1991. Go to original source...
  9. Caldwell, M.M.: Solar ultraviolet radiation as an ecological factor for alpine plants. - Ecol. Monogr. 38: 243-268, 1968. Go to original source...
  10. Caldwell, M.M., Ballare, C.L., Bornman, J.F., Flint, S.D., Bjorn, L.O., Teramura, A.H., Kulandaivelu, G., Tevini, M.: Terrestrial ecosystems increased solar ultraviolet radiation and interactions with other climatic change factors. - Photochem. Photobiol. Sci. 2: 29-38, 2003. Go to original source...
  11. Cybulski, W.J., III, Peterjohn, W.T.: Effects of ambient UV-B radiation on the above-ground biomass of seven temperate-zone plant species. - Plant Ecol. 145: 175-181, 1999. Go to original source...
  12. Day, T.A., Demchik, S.M.: Influence of enhanced UV-B radiation on biomass allocation and pigment concentrations in leaves and reproductive structures of greenhouse-grown Brassica rapa. - Vegetatio 127: 109-116, 1996. Go to original source...
  13. Day, T.A., Vogelmann, T.C.: Alterations in photosynthesis and pigment distributions in pea leaves following UV-B exposure. - Physiol. Plant. 94: 433-440, 1995. Go to original source...
  14. Ekelund, N.G.A., Danilov, R.A.: The influence of selenium on photosynthesis and "light-enhanced dark respiration" (LEDR) in the flagellate Euglena gracilis after exposure to ultraviolet radiation. - Aquat. Sci. 63: 457-465, 2001. Go to original source...
  15. Fabjan, N., Rode, J., Kosir, I.J., Wang, Z., Zhang, Z., Kreft, I.: Tartary buckwheat (Fagopyrum tataricum Gaertn.) as a source of dietary rutin and quercitrin. - J. agr. Food Chem. 51: 6452-6455, 2003. Go to original source...
  16. Gaberscik, A., Germ, M., Skof, A., Drmaz, D., Trost, T.: UV-B radiation screen and respiratory potential in two aquatic primary producers: Scenedesmus quadricauda and Ceratophyllum demersum. - Verhandl. int. Verein. theor. angew. Limnol. 27: 1-4, 2002a. Go to original source...
  17. Gaberscik, A., Voncina, M., Trost, T., Germ, M., Bjorn, L.O.: Growth and production of buckwheat (Fagopyrum esculentum) treated with reduced, ambient and enhanced UV-B radiation. - J. Photochem. Photobiol. B 66: 30-36, 2002b. Go to original source...
  18. Germ, M., Drmaz, D., Sisko, M., Gaberscik, A.: Effects of UV-B radiation on green alga Scenedesmus quadricauda: growth rate, UV-B absorbing compounds and potential respiration in phosphorus rich and phosphorus poor medium. - Phyton (Austria) 42: 25-37, 2002.
  19. Germ, M., Gaberscik, A.: Comparison of aerial and submerged leaves in two amphibious species, Myosotis scorpioides and Ranunculus trichophyllus. - Photosynthetica 41: 91-96, 2003. Go to original source...
  20. Hartikainen, H., Xue, T.L.: The promotive effect of selenium on plant growth as triggered by ultraviolet irradiation. - J. environ. Quality 28: 1372-1375, 1999. Go to original source...
  21. Hartikainen, H., Xue, T., Piironen, V.: Selenium as an antioxidant and pro-oxidant in ryegrass. - Plant Soil 225: 193-200, 2000. Go to original source...
  22. Ito, H., Ohtsuka, T., Tanaka, A.: Conversion of chlorophyll b to chlorophyll a via 7-hydroxymethyl chlorophyll. - J. biol. Chem. 271: 1475-1479, 1996. Go to original source...
  23. Jansen, A.K.M., Gaba, V., Greenberg, B.M.: Higher plants and UV-B radiation: balancing damage, repair and acclimation. - Trends Plant Sci. 3: 131-135, 1998. Go to original source...
  24. Jansen, M.: Ultraviolet-B radiation effects on plants: induction of morphogenic responses. - Physiol. Plant. 116: 423-429, 2002. Go to original source...
  25. Jeffrey, S.W., Humphrey, G.F.: New spectrophotometric equations for determining chlorophylls a, b, c 1 and c 2 in higher plants, algae and natural phytoplankton. - Biochem. Physiol. Pflanzen 167: 191-194, 1975. Go to original source...
  26. Kenner, R.A., Ahmed, S.I.: Measurements of electron transport activities in marine phytoplankton. - Mar. Biol. 33: 119-127, 1975. Go to original source...
  27. Liu, L., Gitz, D.C., III, McClure, J.W.: Effects of UV-B on flavonoids, ferulic acid, growth and photosynthesis in barley primary leaves. - Physiol. Plant. 93: 725-733, 1995. Go to original source...
  28. Mark, U., Tevini, M.: Effects of solar ultraviolet-B radiation, temperature and CO2 on growth and physiology of sunflower and maize seedlings. - Plant Ecol. 128: 224-234, 1997. Go to original source...
  29. Mazza, C.A., Boccalandro, H.E., Giordano, C.V., Battista, D., Scopel, A.L., Ballare, C.: Functional significance and induction by solar radiation of ultraviolet-absorbing sunscreens in field-grown soybean crops. - Plant Physiol. 122: 117-125, 2000. Go to original source...
  30. Mirecki, R.M., Teramura, A.H.: Effects of ultraviolet-B irradiance on soybean. V. The dependence of plant sensitivity on the photosynthetic photon flux density and after leaf expansion. - Plant Physiol. 74: 475-480, 1984. Go to original source...
  31. Olsson, L.: Modification of Flavonoid Content and Photosynthesis by Ultraviolet-B Radiation. Atrazine-Tolerant and Atrazine-Sensitive Cultivars of Brassica napus. - Ph. D. Thesis. Lund University, Lund 1999.
  32. Olsson, L.C., Veit, M., Bornman, J.F.: Epidermal transmittance and phenolic composition in leaves of atrazine-tolerant and atrazine-sensitive cultivars of Brassica napus grown under enhanced UV-B radiation. - Physiol. Plant. 107: 259-266, 1999. Go to original source...
  33. Packard, T.T.: The measurement of respiratory electron-transport activity in marine phytoplankton. - J. mar. Res. 29: 235-243, 1971.
  34. Rozema, J., Bjorn, L.O., Bornmann, J.F, Gaberscik, A., Hader, D.-P., Trost, T., Germ, M., Klisch, M., Groniger, A., Sinha, R.P., Lebert, M., He, Y.-Y., Buffoni-Hall, R., de Bakker, N.V.J., van de Staaij, J., Meijkamp, B.B.: The role of UV-B radiation in aquatic and terrestrial ecosystems - an experimental and functional analysis of the evolution of UV-B absorbing compounds. - J. Photochem. Photobiol. B 66: 2-12, 2002. Go to original source...
  35. Rozema, J., van de Staaij, J., Bjorn, L.O., Caldwell, M.: UV-B as an environmental factor in plant life: stress and regulation. - Trends Ecol. Evolut. 12: 22-28, 1997. Go to original source...
  36. Seppanen, M., Turakainen, M., Hartikainen, H.: Selenium effects on oxidative stress in potato. - Plant Sci. 165: 311-319, 2003. Go to original source...
  37. Schreiber, U., Bilger, W., Neubauer, C.: Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis. - In: Schulze, E.-D., Caldwell, M.M. (ed.): Ecophysiology of Photosynthesis. Pp. 49-70. Springer-Verlag, Berlin - Heidelberg - New York 1995. Go to original source...
  38. Valkama, E., Kivimaenpaa, M., Hartikainen, H., Wulff, A.: The combined effects of enhanced UV-B radiation and selenium on growth, chlorophyll fluorescence and ultrastructure in strawberry (Fragaria × ananassa) and barley (Hordeum vugare) treated in the field. - Agr. Forest Meteorol. 120: 267-278, 2003. Go to original source...
  39. Xue, T.L., Hartikainen, H., Piironen, V.: Antioxidative and growth-promoting effects of selenium on senescing lettuce. - Plant Soil 237: 55-61, 2001. Go to original source...