Photosynthetica 2018, 56(1):382-391 | DOI: 10.1007/s11099-017-0757-5

Tocopherols modulate leaf vein arrangement and composition without impacting photosynthesis

J. J. Stewart1, W. W. Adams1, C. M. Cohu1, B. Demmig-Adams1,*
1 Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, USA

Growth of the tocopherol-deficient vte1 mutant and Col-0 wild type of Arabidopsis thaliana in a sunlit glasshouse revealed both similarities and differences between genotypes. Photosynthetic capacity and leaf mesophyll features did not differ between mutant and wild type. Likewise, the total volume of water conduits (tracheary elements, TEs), sugar conduits (sieve elements, SEs), and sugar-loading cells (companion and phloem parenchyma cells) on a leaf area basis were unaffected by tocopherol deficiency. However, tocopherol deficiency yielded smaller and more numerous minor veins with fewer phloem cells and smaller TEs, resulting in greater ratios of TEs to SEs. The smaller TEs in the vte1 mutant may present a decreased risk for cavitation under high evaporative demand or in response to freezing. In turn, compensation for fewer phloem cells and smaller TEs by more numerous veins may bolster resistance to cavitation at no cost to photosynthetic capacity.

Additional key words: foliar vasculature; leaf venation; vein density; vitamin E deficiency; xylem

Received: May 2, 2017; Accepted: August 25, 2017; Published: March 1, 2018  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Stewart, J.J., Adams, W.W., Cohu, C.M., & Demmig-Adams, B. (2018). Tocopherols modulate leaf vein arrangement and composition without impacting photosynthesis. Photosynthetica56(SPECIAL ISSUE), 382-391. doi: 10.1007/s11099-017-0757-5
Download citation

References

  1. Adams W.W. III, Muller O., Cohu C.M., Demmig-Adams B.: Foliar phloem infrastructure in support of photosynthesis.-Front. Plant Sci. 4: 194, 2013. Go to original source...
  2. Adams W.W. III, Cohu C.M., Amiard V., Demmig-Adams B.: Associations between phloem-cell wall ingrowths in minor veins and maximal photosynthesis rate.-Front. Plant Sci. 5: 24, 2014. Go to original source...
  3. Adams W.W. III, Stewart J.J., Cohu C.M. et al.: Habitat temperature and precipitation of Arabidopsis thaliana ecotypes determine the response of foliar vasculature, photosynthesis, and transpiration to growth temperature.-Front. Plant Sci. 7: 1026, 2016. Go to original source...
  4. Ågren J., Schemske D.W.: Reciprocal transplants demonstrate strong adaptive differentiation of the model organism Arabidopsis thaliana in its native range.-New Phytol. 194: 1112-1122, 2012.
  5. Allu A.D., Simancas B., Balazadeh S., Munné-Bosch S.: Defense-related transcriptional reprogramming in vitamin Edeficient Arabidopsis mutants exposed to contrasting phosphate availability.-Front. Plant Sci. 8: 1396, 2017. Go to original source...
  6. Amiard V., Mueh K.E., Demmig-Adams B. et al.: Anatomical and photosynthetic acclimation to the light environment in species with differing mechanisms of phloem loading.-P. Natl. Acad. Sci. USA 102: 12968-12973, 2005. Go to original source...
  7. Cohu C.M., Muller O., Stewart J.J. et al.: Association between minor loading vein architecture and light- and CO2-saturated oxygen evolution among Arabidopsis thaliana ecotypes from different latitudes.-Front. Plant Sci. 4: 264, 2013a. Go to original source...
  8. Cohu C.M., Muller O., Demmig-Adams B., Adams W.W. III: Minor loading vein acclimation for three Arabidopsis thaliana ecotypes in response to growth under different temperature and light regimes.-Front. Plant Sci. 4: 240, 2013b. Go to original source...
  9. Cohu C.M., Muller O., Adams W.W. III, Demmig-Adams B.: Leaf anatomical and photosynthetic acclimation to cool temperature and high light in two winter versus summer annuals.-Physiol. Plantarum 152: 164-173, 2014. Go to original source...
  10. Considine M.J., Foyer C.H.: Redox regulation of plant development.-Antioxid. Redox Sign. 21: 1305-1326, 2014. Go to original source...
  11. Davis S.D., Sperry J.S., Hacke U.G.: The relationship between xylem conduit diameter and cavitation caused by freezing.-Am. J. Bot. 86: 1367-1372, 1999. Go to original source...
  12. Demmig-Adams B., Cohu C.M., Muller O., Adams W.W. III: Modulation of photosynthetic energy conversion efficiency in nature: from seconds to seasons.-Photosynth. Res. 113: 75-88, 2012. Go to original source...
  13. Demmig-Adams B., Cohu C.M., Amiard V. et al.: Emerging trade-offs-impact of photoprotectants (PsbS, xanthophylls, and vitamin E) on oxylipins as regulators of development and defense.-New Phytol. 197: 720-729, 2013. Go to original source...
  14. Demmig-Adams B., Stewart J.J., Adams W.W. III: Multiple feedbacks between chloroplast and whole plant in the context of plant adaptation and acclimation to the environment.-Philos. T. R. Soc. B 269: 20130244, 2014a. Go to original source...
  15. Demmig-Adams B., Stewart J.J., Adams W.W. III: Photoprotection and the trade-off between abiotic and biotic defense.-In: Demmig-Adams B., Garab G., Adams W.W. III, Govindjee (ed.): Non-Photochemical Quenching and Energy Dissipation in Plants, Algae and Cyanobacteria. Pp. 631-643. Springer, Dordrecht 2014b. Go to original source...
  16. Demmig-Adams B., Stewart J.J., Burch T.A., Adams W.W. III: Insights from placing photosynthetic light harvesting into context.-J. Phys. Chem. Lett. 5: 2880-2889, 2014c. Go to original source...
  17. Delieu T., Walker D.A.: Polarographic measurements of photosynthetic oxygen evolution by leaf discs.-New Phytol. 89: 165-178, 1981. Go to original source...
  18. Dumlao M.R., Darehshouri A., Cohu C.M. et al.: Low temperature acclimation of photosynthetic capacity and leaf morphology in the context of phloem loading type.-Photosynth. Res. 113: 181-189, 2012. Go to original source...
  19. Fatichi S., Leuzinger S., Körner C.: Moving beyond photosynthesis: from carbon source to sink-driven vegetation modeling.-New Phytol. 201: 1086-1095, 2014. Go to original source...
  20. Foyer C.H., Noctor G.: Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications.-Antioxid. Redox Sign. 11: 861-905, 2009. Go to original source...
  21. Foyer C.H., Noctor G.: Redox signaling in plants.-Antioxid. Redox Sign. 18: 2087-2090, 2013. Go to original source...
  22. Gehan M.A., Park S., Gilmour S.J. et al.: Natural variation in the C-repeat binding factor cold response pathway correlates with local adaptation of Arabidopsis ecotypes.-Plant J. 84: 682-693, 2015. Go to original source...
  23. Hacke U.G., Sperry J.S.: Functional and ecological xylem anatomy.-Perspect. Plant Ecol. 4: 97-115, 2001. Go to original source...
  24. Hacke U.G., Jacobsen A.L., Pratt R.B.: Xylem function of aridland shrubs from California, USA: an ecological and evolutionary analysis.-Plant Cell Environ. 32: 1324-1333, 2009. Go to original source...
  25. Hargrave K.R., Kolb K.J., Ewers F.W., Davis S.D.: Conduit diameter and drought-induced embolism in Salvia mellifera Greene (Labiatae).-New Phytol. 126: 695-705, 1994. Go to original source...
  26. Havaux M., García-Plazaola J.I.: Beyond non-photochemical fluorescence quenching: the overlapping antioxidant functions of zeaxanthin and tocopherols.-In: Demmig-Adams B., Garab G., Adams W.W. III, Govindjee (ed.) Non-Photochemical Quenching and Energy Dissipation in Plants, Algae and Cyanobacteria. Pp. 583-603. Springer, Dordrecht 2014. Go to original source...
  27. Hölttä T., Nikinmaa E.: Modelling the effect of xylem and phloem transport on leaf gas exchange.-Acta Hortic. 991: 351-358, 2013. Go to original source...
  28. Hölttä T., Vesala T., Sevanto S. et al.: Modeling xylem and phloem water flows in trees according to cohesion theory and Münch hypothesis.-Trees 20: 67-78, 2006. Go to original source...
  29. Hüner N.P.A., Maxwell D.P, Gray G.R. et al.: Sensing environmental temperature change through imbalances between energy supply and energy consumption: redox state of photosystem II.-Physiol. Plantarum 98: 358-364, 1996. Go to original source...
  30. Hüner N.P.A., Bode R., Dahal K. et al.: Chloroplast redox imbalance governs phenotypic plasticity: the "grand design of photosynthesis" revisited.-Front. Plant Sci. 3: 255, 2012. Go to original source...
  31. Hüner N.P.A., Dahal K., Bode R. et al.: Photosynthetic acclimation, vernalization, crop productivity and the 'grand design of photosynthesis'.-J. Plant Physiol. 203: 29-43, 2016. Go to original source...
  32. Kang J., Dengler N.: Vein pattern development in adult leaves of Arabidopsis thaliana.-Int. J. Plant Sci. 165: 231-242, 2004. Go to original source...
  33. Kang J., Zhang H., Sun T. et al.: Natural variation of C-repeatbinding factor (CBFs) genes is a major cause of divergence in freezing tolerance among a group of Arabidopsis thaliana populations along the Yangtze River in China.-New Phytol. 199: 1069-1080, 2013. Go to original source...
  34. Körner C.: Growth controls photosynthesis-mostly.-Nova Act. Lc. 114: 273-283, 2013.
  35. Ksas B., Becuwe N., Chevalier A., Havaux M.: Plant tolerance to excess light energy and photooxidative damage relies on plastoquinone biosynthesis.-Sci. Rep. 5: 10919, 2015. Go to original source...
  36. Külheim C., Ågren J., Jansson S.: Rapid regulation of light harvesting and plant fitness in the field.-Science 297: 91-93, 2002. Go to original source...
  37. Kurepin L.V., Dahal K.P., Savitch L.V. et al.: Role of CBFs as integrators of chloroplast redox, phytochrome and plant hormone signaling during cold acclimation.-Int. J. Mol. Sci. 14: 12729-12763, 2013. Go to original source...
  38. Logan B.A., Kornyeyev D., Hardison J., Holaday A.S.: The role of antioxidant enzymes in photoprotection.-Photosynth. Res. 88: 119-132, 2006. Go to original source...
  39. Maeda H., Song W., Sage T.L., DellaPenna D.: Tocopherols play a crucial role in low-temperature adaptation and phloem loading in Arabidopsis.-Plant Cell 18: 2710-2732, 2006. Go to original source...
  40. Maeda H., Song W., Sage T., DellaPenna D.: Role of callose synthases in transfer cell wall development in tocopherol deficient Arabidopsis mutants.-Front. Plant Sci. 5: 46, 2014. Go to original source...
  41. Mattsson J., Ckurshumova W., Berleth T.: Auxin signaling in Arabidopsis leaf vascular development.-Plant Physiol. 131: 1327-1339, 2003. Go to original source...
  42. Mène-Saffrané L., DellaPenna D.: Biosynthesis, regulation and function of tocochromanols in plants.-Plant Physiol. Bioch. 48: 301-309, 2010. Go to original source...
  43. Mishra Y., Jänkänpää H.J., Kiss A.Z. et al.: Arabidopsis plants grown in the field and climate chambers significantly differ in leaf morphology and photosystem components.-BMC Plant Biol. 12: 6, 2012. Go to original source...
  44. Muller O., Cohu C.M., Stewart J.J. et al.: Association between photosynthesis and contrasting features of minor veins in leaves of summer annuals loading phloem via symplastic versus apoplastic routes.-Physiol. Plantarum 152: 174-183, 2014a. Go to original source...
  45. Muller O., Stewart J.J., Cohu C.M. et al.: Leaf architectural, vascular, and photosynthetic acclimation to temperature in two biennials.-Physiol. Plantarum 152: 763-772, 2014b. Go to original source...
  46. Nikinmaa E., Hölttä T., Hari P. et al.: Assimilate transport in phloem sets conditions for leaf gas exchange.-Plant Cell Environ. 36: 655-669, 2013. Go to original source...
  47. Oakley C.G., Ågren J., Atchison R.A., Schemske D.W.: QTL mapping of freezing tolerance: links to fitness and adaptive trade-offs.-Mol. Ecol. 23: 4304-4315, 2014. Go to original source...
  48. Paul M.J., Driscoll S.P.: Sugar repression of photosynthesis: The role of carbohydrates on signaling nitrogen deficiency through source:sink imbalance.-Plant Cell Environ. 20: 110-116, 1997. Go to original source...
  49. Paul M.J., Foyer C.H.: Sink regulation of photosynthesis.-J. Exp. Bot. 52: 1383-1400, 2001. Go to original source...
  50. Sack L., Holbrook N.M.: Leaf hydraulics.-Annu. Rev. Plant Biol. 57: 361-381, 2006. Go to original source...
  51. Sack L., Scoffoni C.: Leaf venation: structure, function, development, evolution, ecology and applications in the past, present and future.-New Phytol. 198: 983-1000, 2013. Go to original source...
  52. Sack L., Scoffoni C., McKown A.D. et al.: Developmentally based scaling of leaf venation architecture explains global ecological patterns.-Nat. Commun. 3: 837, 2012. Go to original source...
  53. Sack L., Scoffoni C., Johnson D.M. et al.: The anatomical determinants of leaf hydraulic function.-In: Hacke U. (ed.): Functional and Ecological Xylem Anatomy. Pp. 255-271. Springer, Dordrecht 2015. Go to original source...
  54. Sattler S.E., Cahoon E.B., Coughlan S.J., DellaPenna D.: Characterization of tocopherol cyclases from higher plants and cyanobacteria. Evolutionary implications for tocopherol synthesis and function.-Plant Physiol. 132: 2184-2195, 2003. Go to original source...
  55. Sattler S.E., Mène-Saffrané L., Farmer E.E. et al.: Nonenzymatic lipid peroxidation reprograms gene expression and activates defense markers in Arabidopsis tocopherol-deficient mutants.-Plant Cell 18: 3706-3720, 2006. Go to original source...
  56. Scarpella E., Meijer A.H.: Pattern formation in the vascular system of monocot and dicot plant species.-New Phytol. 164: 209-242, 2004. Go to original source...
  57. Semchuk N.M., Lushak O.V., Falk J. et al.: Inactivation of genes, encoding tocopherol biosynthesis pathway enzymes, results in oxidative stress in outdoor grown Arabidopsis thaliana.-Plant Physiol. Bioch. 47: 384-390, 2009. Go to original source...
  58. Sterck F.J., Martínez-Vilalta J., Mencuccini M. et al.: Understanding trait interactions and their impacts on growth in Scots pine branches across Europe.-Funct. Ecol. 26: 541-549, 2012. Go to original source...
  59. Stewart J.J., Adams W.W. III, Cohu C.M. et al.: Differences in light-harvesting, acclimation to growth-light environment, and leaf structural development between Swedish and Italian ecotypes of Arabidopsis thaliana.-Planta 242: 1277-1290, 2015. Go to original source...
  60. Stewart J.J., Demmig-Adams B., Cohu C.M. et al.: Growth temperature impact on leaf form and function in Arabidopsis thaliana ecotypes from northern and southern Europe.-Plant Cell Environ. 39: 1549-1558, 2016. Go to original source...
  61. Stewart J.J., Polutchko S.K., Adams W.W. III et al.: Light, temperature and tocopherol status influence foliar vascular anatomy and leaf function Arabidopsis thaliana.-Physiol. Plantarum 160: 98-110, 2017. Go to original source...