Comptes Rendus
Entropy generation in a variable viscosity channel flow of nanofluids with convective cooling
Comptes Rendus. Mécanique, Volume 343 (2015) no. 1, pp. 38-56.

The present work investigates the combined effects of thermophoresis, Brownian motion and variable viscosity on entropy generation in an unsteady flow of water-based nanofluids confined between two parallel plates with convective heat exchange with the ambient surrounding at the walls. Both first and second laws of thermodynamics are applied to analyse the problem. The nonlinear governing equations of continuity, momentum, energy, and nanoparticles concentration are tackled numerically using a semi-discretisation finite-difference method together with a Runge–Kutta–Fehlberg integration scheme. Numerical results for velocity, temperature, and nanoparticles concentration profiles are obtained and utilised to compute the skin friction, the Nusselt number, the entropy generation rate, the irreversibility ratio, and the Bejan number. Pertinent results are displayed graphically and discussed quantitatively.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2014.09.002
Mots clés : Channel flows, Nanofluids, Variable viscosity, Entropy generation, Bejan number
Michael Hamza Mkwizu 1 ; Oluwole Daniel Makinde 2

1 Computation and Communication Science and Engineering, Nelson Mandela African Institution of Science and Technology (NM-AIST), P.O. Box 447, Arusha, Tanzania
2 Faculty of Military Science, Stellenbosch University, Private Bag X2, Saldanha 7395, South Africa
@article{CRMECA_2015__343_1_38_0,
     author = {Michael Hamza Mkwizu and Oluwole Daniel Makinde},
     title = {Entropy generation in a variable viscosity channel flow of nanofluids with convective cooling},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {38--56},
     publisher = {Elsevier},
     volume = {343},
     number = {1},
     year = {2015},
     doi = {10.1016/j.crme.2014.09.002},
     language = {en},
}
TY  - JOUR
AU  - Michael Hamza Mkwizu
AU  - Oluwole Daniel Makinde
TI  - Entropy generation in a variable viscosity channel flow of nanofluids with convective cooling
JO  - Comptes Rendus. Mécanique
PY  - 2015
SP  - 38
EP  - 56
VL  - 343
IS  - 1
PB  - Elsevier
DO  - 10.1016/j.crme.2014.09.002
LA  - en
ID  - CRMECA_2015__343_1_38_0
ER  - 
%0 Journal Article
%A Michael Hamza Mkwizu
%A Oluwole Daniel Makinde
%T Entropy generation in a variable viscosity channel flow of nanofluids with convective cooling
%J Comptes Rendus. Mécanique
%D 2015
%P 38-56
%V 343
%N 1
%I Elsevier
%R 10.1016/j.crme.2014.09.002
%G en
%F CRMECA_2015__343_1_38_0
Michael Hamza Mkwizu; Oluwole Daniel Makinde. Entropy generation in a variable viscosity channel flow of nanofluids with convective cooling. Comptes Rendus. Mécanique, Volume 343 (2015) no. 1, pp. 38-56. doi : 10.1016/j.crme.2014.09.002. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2014.09.002/

[1] S.U.S. Choi Enhancing thermal conductivity of fluids with nanoparticles, Proc. ASME Int. Mech. Eng. Congress and Exposition, ASME, San Francisco, USA, 1995, pp. 99-105 (FED 231/MD 66)

[2] S.U.S. Choi; Z.G. Zhang; W. Yu; F.E. Lockwood; E.A. Grulke Anomalously thermal conductivity enhancement in nanotube suspensions, Appl. Phys. Lett., Volume 79 (2001) no. 2, pp. 2252-2254

[3] E. Abu-Nada Application of nanofluids for heat transfer enhancement of separated flows encountered in a backward facing step, Int. J. Heat Fluid Flow, Volume 29 (2008), pp. 242-249

[4] O.D. Makinde; A. Aziz Boundary layer flow of a nanofluid past a stretching sheet with a convective boundary condition, Int. J. Therm. Sci., Volume 50 (2011), pp. 1326-1332

[5] O.D. Makinde Effects of viscous dissipation and Newtonian heating on boundary layer flow of nanofluids over a flat plate, Int. J. Numer. Methods Heat Fluid Flow, Volume 23 (2013) no. 8, pp. 1291-1303

[6] W.N. Mutuku-Njane; O.D. Makinde Combined effect of buoyancy force and Navier slip on MHD flow of a nanofluid over a convectively heated vertical porous plate, Sci. World J., Volume 2013 (2013), p. 725643 (8 pp.)

[7] M. Olanrewaju; O.D. Makinde On boundary layer stagnation point flow of a nanofluid over a permeable flat surface with Newtonian heating, Chem. Eng. Commun., Volume 200 (2013) no. 6, pp. 836-852

[8] O.D. Makinde Analysis of Sakiadis flow of nanofluids with viscous dissipation and Newtonian heating, Appl. Math. Mech., Volume 33 (2012) no. 12, pp. 1545-1554

[9] T.G. Motsumi; O.D. Makinde Effects of thermal radiation and viscous dissipation on boundary layer flow of nanofluids over a permeable moving flat plate, Phys. Scr., Volume 86 (2012), p. 045003 (8 pp.)

[10] K.S. Hwang; J.-H. Lee; S.P. Jang Buoyancy-driven heat transfer of water-based Al2O3 nanofluids in a rectangular cavity, Int. J. Heat Mass Transf., Volume 50 (2007), pp. 4003-4010

[11] D.A. Nield; A.V. Kuznetsov The Cheng–Minkowycz problem for natural convective boundary-layer flow in a porous medium saturated by a nanofluid, Int. J. Heat Mass Transf., Volume 52 (2009), pp. 5792-5795

[12] H.F. Oztop; E. Abu-Nada Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids, Int. J. Heat Fluid Flow, Volume 29 (2008), pp. 1326-1336

[13] W. Ibrahim; O.D. Makinde The effect of double stratification on boundary-layer flow and heat transfer of nanofluid over a vertical plate, Comput. Fluids, Volume 86 (2013), pp. 433-441

[14] O.D. Makinde; W.A. Khan; Z.H. Khan Buoyancy effects on MHD stagnation point flow and heat transfer of a nanofluid past a convectively heated stretching/shrinking sheet, Int. J. Heat Mass Transf., Volume 62 (2013), pp. 526-533

[15] O.D. Makinde Computational modelling of nanofluids flow over a convectively heated unsteady stretching sheet, Curr. Nanosci., Volume 9 (2013), pp. 673-678

[16] X.Q. Wang; A.S. Mujumdar Heat transfer characteristics of nanofluids: a review, Int. J. Therm. Sci., Volume 46 (2007), pp. 1-19

[17] J. Buongiorno Convective transport in nanofluids, J. Heat Transf., Volume 128 (2006), pp. 240-250

[18] W.N. Mutuku-Njane; O.D. Makinde MHD nanofluid flow over a permeable vertical plate with convective heating, J. Comput. Theor. Nanosci., Volume 11 (2014) no. 3, pp. 667-675

[19] R.K. Tiwari; M.K. Das Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids, Int. J. Heat Mass Transf., Volume 50 (2007), pp. 2002-2018

[20] A. Bejan Second-law analysis in heat transfer and thermal design, Adv. Heat Transf., Volume 15 (1982), pp. 1-58

[21] A. Bejan Entropy Generation Minimization, CRC Press, Boca Raton, FL, USA, 1996

[22] L.C. Woods Thermodynamics of Fluid Systems, Oxford University Press, Oxford, UK, 1975

[23] U. Narusawa The second-law analysis of mixed convection in rectangular ducts, Heat Mass Transf., Volume 37 (1998), pp. 197-203

[24] A.Z. Sahin Second law analysis of laminar viscous flow through a duct subjected to constant wall temperature, J. Heat Transf., Volume 120 (1998), pp. 76-83

[25] O.D. Makinde; A. Aziz Second law analysis for a variable viscosity plane Poiseuille flow with asymmetric convective cooling, Comput. Math. Appl., Volume 60 (2010), pp. 3012-3019

[26] O.D. Makinde; O.A. Beg On inherent irreversibility in a reactive hydromagnetic channel flow, J. Therm. Sci., Volume 19 (2010) no. 1, pp. 72-79

[27] O.D. Makinde; W.A. Khan; A. Aziz On inherent irreversibility in Sakiadis flow of nanofluids, Int. J. Exergy, Volume 13 (2013) no. 2, pp. 159-174

[28] T.Y. Na Computational Methods in Engineering Boundary Value Problems, Academic Press, New York, 1979

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Second-law analysis for buoyancy-driven hydromagnetic couple stress fluid flow through a porous channel

Semiu O. Kareem; Samuel O. Adesanya; Uchechukwu E. Vincent

C. R. Méca (2016)


Modeling of Rayleigh–Bénard natural convection heat transfer in nanofluids

Bilal Elhajjar; Glades Bachir; Abdelkader Mojtabi; ...

C. R. Méca (2010)


Determination of thermal diffusion coefficient of nanofluid: Fullerene–toluene

Alain Martin; M. Mounir Bou-Ali

C. R. Méca (2011)