1887

Abstract

We have derived a restriction enzyme map for the fowlpox virus FP9 strain. Sites for HI, II, I and I have been mapped mainly by Southern blotting. The size of the genome derived from the restriction maps (254 kb) corresponds to the figure of 260 ± 8 kb determined from analysis of genomic DNA by pulsed-field electrophoresis. The map can be compared with a previously published map for a different strain of fowlpox virus using the I digest which is common to both studies. Some 65 kb of fowlpox virus sequence, in 11 blocks, as well as individual M13 clones have been aligned with the map. Where those blocks correspond with blocks of homologous genes in vaccinia virus, it is possible to compare the genomic locations for those genes in the two viruses. This comparison reveals that, whereas there are blocks of sequence within which genes exist in the same relative position in the two viruses, the genomic location of those sequence blocks differs widely between the two viruses.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-73-10-2661
1992-10-01
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/jgv/73/10/JV0730102661.html?itemId=/content/journal/jgv/10.1099/0022-1317-73-10-2661&mimeType=html&fmt=ahah

References

  1. Binns M. M., Stenzler L., Tomley F. M., Campbell J., Boursnell M. E. G. 1987; Identification by a random sequencing strategy of the fowlpoxvirus DNA polymerase gene, its nucleotide sequence and comparison with other viral DNA polymerases. Nucleic Acids Research 15:6563–6573
    [Google Scholar]
  2. Binns M. M., Tomley F. M., Campbell J., Boursnell M. E. G. 1988; Comparison of a conserved region in fowlpox virus and vaccinia virus genomes and the translocation of the fowlpox virus thymidine kinase gene. Journal of General Virology 69:1275–1283
    [Google Scholar]
  3. Binns M. M., Boursnell M. E. G., Tomley F. M., Campbell J. 1989; Analysis of the fowlpox virus gene encoding the 4b core polypeptide and demonstration that it possesses efficient promoter sequences. Virology 170:289–291
    [Google Scholar]
  4. Binns M. M., Britton B. S., Mason C., Boursnell M. E. G. 1990a; Analysis of the fowlpox virus genome region corresponding to the vaccinia virus D6 to A1 region: location of, and variation in, non-essential genes in poxviruses. Journal of General Virology 71:2873–2881
    [Google Scholar]
  5. Binns M., Mason C., Boursnell M. 1990b; A 39000 M r immunodominant protein of fowlpox virus contains multiple copies of a 12 amino acid repeat sequence. Journal of General Virology 71:2883–2888
    [Google Scholar]
  6. Binns M. M., Boursnell M. E. G., Skinner M. A. 1992; The fowlpox virus thymidine kinase gene occupies the ribonucleotide reductase large subunit gene locus and is flanked by 15 bp direct repeats. Virus Research (in press)
    [Google Scholar]
  7. Blomquist M. C., Hunt L. T., Barker W. C. 1984; Vaccinia virus 19-kilodalton protein: relationship to several mammalian proteins, including two growth factors. Proceedings of the National Academy of Sciences, U.S.A. 81:7363–7367
    [Google Scholar]
  8. Boursnell M. E. G., Foulds I. J., Campbell J. I., Binns M. M. 1988; Non-essential genes in the vaccinia virus Hin dIII K fragment: a gene related to serine protease inhibitors and a gene related to the 37K vaccinia virus major envelope antigen. Journal of General Virology 69:2995–3003
    [Google Scholar]
  9. Boyle D. B., Coupar B. E., Gibbs A. J., Seigman L. J., Both G. W. 1987; Fowlpox virus thymidine kinase: nucleotide sequence and relationships to other thymidine kinases. Virology 156:355–365
    [Google Scholar]
  10. Broyles S. S., Moss B. 1986; Homology between RNA polymerases of poxviruses, prokaryotes and eukaryotes: nucleotide sequence and transcriptional analysis of vaccinia virus genes encoding 147-kDa and 22-kDa subunits. Proceedings of the National Academy of Sciences, U.S.A. 83:3141–3145
    [Google Scholar]
  11. Campbell J. I. A., Binns M. M., Tomley F. M., Boursnell M. E. G. 1989; Tandem repeated sequences within the terminal region of the fowlpox virus genome. Journal of General Virology 70:145–154
    [Google Scholar]
  12. Chang W., Upton C., Hu S. L., Purchio A. F., McFadden G. 1987; The genome of Shope fibroma virus, a tumorigenic poxvirus, contains a growth factor gene with sequence similarity to those encoding epidermal growth factor and transforming growth factor alpha. Molecular and Cellular Biology 7:535–540
    [Google Scholar]
  13. Coupar B. E., Teo T., Boyle D. B. 1990; Restriction endonuclease mapping of the fowlpox virus genome. Virology 179:159–167
    [Google Scholar]
  14. Davison A. J., Taylor P. 1987; Genetic relations between varicella-zoster virus and Epstein-Barr virus. Journal of General Virology 68:1067–1079
    [Google Scholar]
  15. Drillien R., Spehner D., Villeval D., Lecocq J. P. 1987; Similar genetic organization between a region of fowlpox virus DNA and the vaccinia virus Hin dIII J fragment despite divergent location of the thymidine kinase gene. Virology 160:203–209
    [Google Scholar]
  16. Esposito J. J., Knight J. C. 1985; Orthopoxvirus DNA: a comparison of restriction profiles and maps. Virology 143:230–251
    [Google Scholar]
  17. Funahashi S., Sato T., Shida H. 1988; Cloning and characterization of the gene encoding the major protein of the A-type inclusion body of cowpox virus. Journal of General Virology 69:35–47
    [Google Scholar]
  18. Gershon P. D., Black D. N. 1989; The nucleotide sequence around the capripoxvirus thymidine kinase gene reveals a gene shared specifically with leporipoxvirus. Journal of General Virology 70:525–533
    [Google Scholar]
  19. Gershon P. D., Ansell D. M., Black D. N. 1989; A comparison of the genome organization of capripoxvirus with that of the orthopoxviruses. Journal of Virology 63:4703–4708
    [Google Scholar]
  20. Gillard S., Spehner D., Drillien R., Kirn A. 1986; Localization and sequence of a vaccinia virus gene required for multiplication in human cells. Proceedings of the National Academy of Sciences, U.S.A. 83:5573–5577
    [Google Scholar]
  21. Goebel S. J., Johnson G. P., Perkus M. E., Davis S. W., Winslow J. P., Paoletti E. 1990; The complete DNA sequence of vaccinia virus. Virology 179:247–266
    [Google Scholar]
  22. Hall R. L., Moyer R. W. 1991; Identification, cloning and sequencing of a fragment of Amsacta moorei entomopoxvirus DNA containing the spheroidin gene and three vaccinia virus-related open reading frames. Journal of Virology 65:6516–6527
    [Google Scholar]
  23. Howard S. T., Chan Y. S., Smith G. L. 1991; Vaccinia virus homologues of the Shope fibroma virus inverted terminal repeat proteins and a discontinuous ORF related to the tumor necrosis factor receptor family. Virology 180:633–647
    [Google Scholar]
  24. Jackson R. J., Bults H. G. 1992; The myxoma virus thymidine kinase gene: sequence and transcriptional mapping. Journal of General Virology 73:323–328
    [Google Scholar]
  25. Kotwal G. J., Moss B. 1988; Analysis of a large cluster of nonessential genes deleted from a vaccinia virus terminal transposition mutant. Virology 167:524–537
    [Google Scholar]
  26. Kotwal G. J., Moss B. 1989; Vaccinia virus encodes two proteins that are structurally related to members of the plasma serine protease inhibitor superfamily. Journal of Virology 63:600–606
    [Google Scholar]
  27. Lux S. E., John K. M., Bennet V. 1990; Analysis of cDNA for human erythrocyte ankyrin indicates a repeated structure with homology to tissue-differentiation and cell-cycle control proteins. Nature, London 344:36–42
    [Google Scholar]
  28. Mackett M., Archard L. C. 1979; Conservation and variation in Orthopoxvirus genome structure. Journal of General Virology 45:683–701
    [Google Scholar]
  29. Mayr A., Malicki K. 1966; Attenuierung von virulentem Huhnerpockenvirus in Zellkulturen und Eigenschaften des attenuierten Virus. Zentralblatt für Veterinärmedizin B13:1–13
    [Google Scholar]
  30. Niles E. G., Condit R. C., Caro P., Davidson K., Matusick L., Seto J. 1986; Nucleotide sequence and genetic map of the 16-kb vaccinia virus Hin dIII D fragment. Virology 153:96–112
    [Google Scholar]
  31. Perkus M. E., Goebel S. J., Davis S. W., Johnson G. P., Limbach K., Norton E. K., Paoletti E. 1990; Vaccinia virus host range genes. Virology 179:276–286
    [Google Scholar]
  32. Pickup D. J., Ink B. S., Hu W., Ray C. A., Joklik W. K. 1986; Hemorrhage in lesions caused by cowpox virus is induced by a viral protein that is related to plasma protein inhibitors of serine proteases. Proceedings of the National Academy of Sciences, U.S.A. 83:7698–7702
    [Google Scholar]
  33. Plucienniczak A., Schroeder E., Zettlmeissel G., Streeck R. E. 1985; Nucleotide sequence of a cluster of early and late genes in a conserved segment of the vaccinia virus genome. Nucleic Acids Research 13:985–998
    [Google Scholar]
  34. Porter C. D., Archard L. C. 1987; Characterization and physical mapping of Molluscum contagiosum virus DNA and location of a sequence capable of encoding a conserved domain of epidermal growth factor. Journal of General Virology 68:673–682
    [Google Scholar]
  35. Rosel J. L., Earl P. L., Weir J. P., Moss B. 1986; Conserved TAAATG sequence at the transcriptional and translational initiation sites of vaccinia virus late genes deduced by structural and functional analysis of the Hin dIII H genomic fragment. Journal of Virology 60:436–449
    [Google Scholar]
  36. Schmitt J. F., Stunnenberg H. G. 1988; Sequence and transcriptional analysis of the vaccinia virus Hin dIII I fragment. Journal of Virology 62:1889–1897
    [Google Scholar]
  37. Schnitzlein W. M., Tripathy D. N. 1991; Identification and nucleotide sequence of the thymidine kinase gene of swinepox virus. Virology 181:727–732
    [Google Scholar]
  38. Schwartz D. C., Cantor C. R. 1984; Separation of yeast chromosome-sized DNAs by pulsed field gradient gel electrophoresis. Cell 37:67–75
    [Google Scholar]
  39. Smith G. L., Howard S. T., Chan Y. S. 1989; Vaccinia virus encodes a family of genes with homology to serine proteinase inhibitors. Journal of General Virology 70:2333–2343
    [Google Scholar]
  40. Smith G. L., Chan Y. S., Howard S. T. 1991; Nucleotide sequence of 42 kbp of vaccinia virus strain WR from near the right inverted terminal repeat. Journal of General Virology 72:1349–1376
    [Google Scholar]
  41. Spehner D., Gillard S., Drillien R., Kirn A. 1988; A cow pox virus gene required for multiplication in Chinese hamster ovary cells. Journal of Virology 62:1297–1304
    [Google Scholar]
  42. Tamin A., Villarreal E. C., Weinrich S. L., Hruby D. E. 1988; Nucleotide sequence and molecular genetic analysis of the vaccinia virus Hin dIII N/M region encoding the genes responsible for resistance to alpha-amanitin. Virology 165:141–150
    [Google Scholar]
  43. Tartaglia J., Winslow J., Goebel S., Johnson G. P., Taylor J., Paoletti E. 1990; Nucleotide sequence analysis of a 10.5 kbp Hin dIII fragment of fowlpox virus: relatedness to the central portion of the vaccinia virus Hin dIII D region. Journal of General Virology 71:1517–1524
    [Google Scholar]
  44. Tomley F., Binns M., Campbell J., Boursnell M. 1988; Sequence analysis of an 11.2 kilobase, near-terminal, Bam HI fragment of fowlpox virus. Journal of General Virology 69:1025–1040
    [Google Scholar]
  45. Upton C., McFadden G. 1986; Identification and nucleotide sequence of the thymidine kinase gene of Shope fibroma virus. Journal of Virology 60:920–927
    [Google Scholar]
  46. Upton C., Delange A. M., McFadden G. 1987; Tumorigenic poxviruses: genomic organization and DNA sequence of the telomeric region of the Shope fibroma virus genome. Virology 160:20–30
    [Google Scholar]
  47. Upton C., Macen J. L., Wishart D. S., McFadden G. 1990; Myxoma virus and malignant rabbit fibroma virus encode a serpin-like protein important for virus virulence. Virology 179:618–631
    [Google Scholar]
  48. Upton C., Stuart D., McFadden G. 1991; Identification and DNA sequence of the large subunit of the capping enzyme from Shope fibroma virus. Virology 183:773–777
    [Google Scholar]
  49. Venkatesan S., Gershowitz A., Moss B. 1982; Complete nucleotide sequence of two adjacent early vaccinia virus genes located within the inverted terminal repetition. Journal of Virology 44:637–646
    [Google Scholar]
  50. Witter R., Menna A., Schumperli D., Stoffel S., Muller H. K., Wyler R. 1977; Hin dIII and Sst I restriction sites mapped on rabbit poxvirus and vaccinia virus DNA. Journal of Virology 23:669–678
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-73-10-2661
Loading
/content/journal/jgv/10.1099/0022-1317-73-10-2661
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error