1887

Abstract

The grapevine fanleaf virus (GFLV) RNA2-encoded polyprotein P2 is proteolytically cleaved by the RNA1-encoded proteinase to yield protein 2A, 2B(MP) movement protein and 2C(CP) coat protein. To further investigate the role of the 2B(MP) and 2C(CP) proteins in virus movement, RNA2 was engineered by alternatively replacing the GFLV 2B(MP) and 2C(CP) genes with their counterparts from the closely related Arabis mosaic virus (ArMV). Transcripts of all chimeric RNA2s were able to replicate in Chenopodium quinoa protoplasts and form tubules in tobacco BY-2 protoplasts in the presence of the infectious transcript of GFLV RNA1. Virus particles were produced when the GFLV 2C(CP) gene was replaced with its ArMV counterpart, but systemic virus spread did not occur in C. quinoa plants. In addition, chimeric RNA2 containing the complete ArMV 2B(MP) gene was neither encapsidated nor infectious on plants, probably because polyprotein P2 was incompletely processed. However, chimeric RNA2 encoding ArMV 2B(MP), in which the nine C-terminal residues were those of GFLV 2B(MP), formed virus particles and were infectious in the presence of GFLV but not ArMV 2C(CP). These results suggest that the nine C-terminal residues of 2B(MP) must be of the same virus origin as the proteinase for efficient proteolytic processing of polyprotein P2 and from the same virus origin as the 2C(CP) for systemic virus spread.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-80-6-1347
1999-06-01
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/jgv/80/6/0801347a.html?itemId=/content/journal/jgv/10.1099/0022-1317-80-6-1347&mimeType=html&fmt=ahah

References

  1. Allison R., Thompson C., Ahlquist P. 1990; Regeneration of a functional RNA virus genome by recombination between deletion mutants and requirement for cowpea chlorotic mottle virus 3a and coat genes for systemic infection. Proceedings of the National Academy of Sciences, USA 87:1820–1824
    [Google Scholar]
  2. Demangeat G., Hemmer O., Fritsch C., Le Gall O., Candresse T. 1991; In vitro processing of the RNA-2-encoded polyprotein of two nepoviruses: tomato black ring virus and grapevine chrome mosaic virus. Journal of General Virology 72:247–252
    [Google Scholar]
  3. Dolja V. V., Haldeman-Cahill R., Montgomery A. E., Vandenbosch K. A., Carrington J. C. 1995; Capsid protein determinants involved in cell-to-cell and long distance movement of tobacco etch potyvirus. Virology 206:1007–1016
    [Google Scholar]
  4. Gaire F. 1998 Implication du systéme endomembranaire dans la réplication du virus du court-noué de la vigne (GFLV): rôle de la protéine 2A dans la replication du RNA 2 PhD thesis Université Louis Pasteur Strasbourg, France;
    [Google Scholar]
  5. Hans F., Fuchs M., Pinck L. 1992; Replication of grapevine fanleaf virus satellite RNA transcripts in Chenopodium quinoa protoplasts. Journal of General Virology 73:2517–2523
    [Google Scholar]
  6. Kasteel D. T. J., van der Wel N. N., Jansen K. A. J., Goldbach R. W., van Lent J. W. M. 1997; Tubule-forming capacity of the movement proteins of alfalfa mosaic virus and brome mosaic virus. Journal of General Virology 78:2089–2093
    [Google Scholar]
  7. Kunkel T. A. 1985; Rapid and efficient site-specific mutagenesis without phenotypic selection. Proceedings of the National Academy of Sciences, USA 82:488–492
    [Google Scholar]
  8. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685
    [Google Scholar]
  9. Lekkerkerker A. M., Wellink J., Yuan P., van Lent J., Goldbach R., van Kammen A. 1996; Distinct functional domains in the cowpea mosaic virus movement protein. Journal of Virology 70:5658–5661
    [Google Scholar]
  10. Liu Y. Y., Cooper J. I., Coates D., Bauer G. 1991; Biologically active transcripts of a large satellite RNA from arabis mosaic nepovirus and the importance of 5′ end sequences for its replication. Journal of General Virology 72:2867–2874
    [Google Scholar]
  11. Loudes A. M., Ritzenthaler C., Pinck M., Serghini M. A., Pinck L. 1995; The 119 kDa and 124 kDa polyproteins of arabis mosaic nepovirus (isolate S) are encoded by two distinct RNA2 species. Journal of General Virology 76:899–906
    [Google Scholar]
  12. Margis R., Viry M., Pinck L. 1991; Cloning and in vitro characterization of the grapevine fanleaf virus proteinase cistron. Virology 185:779–787
    [Google Scholar]
  13. Margis R., Ritzenthaler C., Reinbolt J., Pinck M., Pinck L. 1993; Genome organization of grapevine fanleaf nepovirus RNA2 deduced from the 122K polyprotein P2 in vitro cleavage products. Journal of General Virology 74:1919–1926
    [Google Scholar]
  14. Murant A. F. 1981; Nepoviruses. In Handbook of Plant Virus Infections and Comparative Diagnosis pp 198–256 Edited by Kurstak E. Amsterdam: Elsevier/North Holland Biomedical Press;
    [Google Scholar]
  15. Perbal M.-C., Thomas C. L., Maule A. J. 1993; Cauliflower mosaic virus gene I product (P1) forms tubular structures which extend from the surface of infected protoplasts. Virology 76:907–915
    [Google Scholar]
  16. Pinck L., Fuchs M., Pinck M., Ravelonandro M., Walter B. 1988; A satellite RNA in grapevine fanleaf virus strain F13. Journal of General Virology 69:233–239
    [Google Scholar]
  17. Pinck M., Reinbolt J., Loudes A. M., Le Ret M., Pinck L. 1991; Primary structure and location of the genome-linked protein (VPg) of grapevine fanleaf nepovirus. FEBS Letters 284:117–119
    [Google Scholar]
  18. Reusken C. B. E. M., Neeleman L., Bol J. F. 1995; Ability of tobacco streak virus coat protein to substitute for late functions of Alfalfa mosaic virus coat protein. Journal of Virology 69:4552–4555
    [Google Scholar]
  19. Ritzenthaler C. 1994 Caractérisation in vitro et in vivo des produits de maturation de la polyprotéine codée par le RNA 2 des virus du court noué de la vigne (GFLV et ArMV). Rôle de ces protéines dans le mouvement du GFLV de cellule a cellule et dans la replication du RNA 2 PhD thesis Université Louis Pasteur Strasbourg, France:
    [Google Scholar]
  20. Ritzenthaler C., Viry M., Pinck M., Margis R., Fuchs M., Pinck L. 1991; Complete nucleotide sequence and genetic organization of grapevine fanleaf nepovirus RNA1. Journal of General Virology 72:2357–2365
    [Google Scholar]
  21. Ritzenthaler C., Pinck M., Pinck L. 1995a; Grapevine fanleaf nepovirus P38 putative movement protein is not transiently expressed and is a stable final maturation product in vivo. Journal of General Virology 76:907–915
    [Google Scholar]
  22. Ritzenthaler C., Schmit A.-C., Michler P., Stussi-Garaud C., Pinck L. 1995b; Grapevine fanleaf nepovirus P38 putative movement protein is located on tubules in vivo. Molecular Plant-Microbe Interactions 8:379–387
    [Google Scholar]
  23. Salanki K., Carrere I., Jacquemond M., Balazs E., Tepfer M. 1997; Biological properties of pseudorecombinant and recombinant strains created with cucumber mosaic virus and tomato aspermy virus. Journal of Virology 71:3597–3602
    [Google Scholar]
  24. Sánchez-Navarro J. A., Reusken C. B. E. M., Bol J. F., Pallas V. 1997; Replication of alfalfa mosaic virus RNA 3 with movement and coat protein genes replaced by corresponding genes of Prunus necrotic ringspot ilarvirus. Journal of General Virology 78:3171–3176
    [Google Scholar]
  25. Schmitz I., Rao A. L. 1996; Molecular studies on bromovirus capsid protein. I. Characterization of cell-to-cell movement-defective RNA3 variants of brome mosaic virus. Virology 226:281–293
    [Google Scholar]
  26. Serghini M. A., Fuchs M., Pinck M., Reinbolt J., Walter B., Pinck L. 1990; RNA2 of grapevine fanleaf virus: sequence analysis and coat protein cistron location. Journal of General Virology 71:1433–1441
    [Google Scholar]
  27. Shanks M., Dessens J. T., Lomonossoff G. P. 1996; The 24 kDa proteinases of comoviruses are virus-specific in cis as well as in trans. Journal of General Virology 77:2365–2369
    [Google Scholar]
  28. Storms M., Kormelink R., Peters D., van Lent J. W. M., Goldbach R. 1995; The nonstructural NSm protein of tomato spotted wilt virus induces tubular structures in plant and insect cells. Virology 214:485–493
    [Google Scholar]
  29. Thomas C. L., Maule A. J. 1995; Identification of structural domains within the cauliflower mosaic virus movement protein by scanning deletion mutagenesis and epitope tagging. Plant Cell 7:561–572
    [Google Scholar]
  30. van der Vossen E. A. G., Notenboom T., Bol J. F. 1995; Characterization of sequences controlling the synthesis of alfalfa mosaic virus subgenomic RNA in vivo. Virology 212:663–672
    [Google Scholar]
  31. van Lent J., Storms M., van der Meer F., Wellink J., Goldbach R. 1991; Tubular structures involved in movement of cowpea mosaic virus are also formed in infected cowpea protoplasts. Journal of General Virology 72:2615–2623
    [Google Scholar]
  32. Viry M., Serghini M. A., Hans F., Ritzenthaler C., Pinck M., Pinck L. 1993; Biologically active transcripts from cloned cDNA of genomic grapevine fanleaf nepovirus RNAs. Journal of General Virology 74:169–174
    [Google Scholar]
  33. Ward C. W. 1993; Progress towards a higher taxonomy of plant viruses. Research in Virology 144:419–453
    [Google Scholar]
  34. Wellink J., van Lent J. W. M., Verver J., Sijen T., Goldbach R. W., van Kammen A. 1993; The cowpea mosaic virus M-RNA-encoded 48-kiloDalton protein is responsible for induction of tubular structures in protoplasts. Journal of Virology 67:3660–3664
    [Google Scholar]
  35. Wieczorek A., Sanfaҫon H. 1993; Characterization and subcellular localization of tomato ringspot nepovirus putative movement protein. Virology 194734–742
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-80-6-1347
Loading
/content/journal/jgv/10.1099/0022-1317-80-6-1347
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error