1887

Abstract

Plant viruses move to adjacent cells with the use of virus-encoded cell-to-cell movement proteins. Using proteins produced by translation, we present evidence that the ‘69K’ movement protein of (TYMV) is recognized as a substrate for the attachment of polyubiquitin chains and for subsequent rapid and selective proteolysis by the proteasome, the ATP-dependent proteolytic system present in reticulocyte lysate. Truncation of the 69K protein suggests the existence of two degradation signals within its sequence. We propose that selective degradation of virus movement proteins may contribute to the previously reported transient nature of their accumulation during infection.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-83-12-3187
2002-12-01
2024-05-04
Loading full text...

Full text loading...

/deliver/fulltext/jgv/83/12/0833187a.html?itemId=/content/journal/jgv/10.1099/0022-1317-83-12-3187&mimeType=html&fmt=ahah

References

  1. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. 1987 Current Protocols in Molecular Biology New York: Wiley;
    [Google Scholar]
  2. Aviel S., Winberg G., Massucci M., Ciechanover A. 2000; Degradation of the Epstein–Barr virus latent membrane protein 1 (LMP1) by the ubiquitin–proteasome pathway. Targeting via ubiquitination of the N-terminal residue. Journal of Biological Chemistry 275:23491–23499
    [Google Scholar]
  3. Bachmair A., Novatchkova M., Potuschak T., Eisenhaber F. 2001; Ubiquitylation in plants: a post-genomic look at a post-translational modification. Trends in Plant Science 6:463–470
    [Google Scholar]
  4. Becker F., Buschfeld E., Schell J., Bachmair A. 1993; Altered response to viral infection by tobacco plants perturbed in ubiquitin system. Plant Journal 3:875–881
    [Google Scholar]
  5. Boyer J. C., Drugeon G., Séron K., Morch-Devignes M. D., Agnès F., Haenni A. L. 1993; In vitro transcripts of turnip yellow mosaic virus encompassing a long 3’ extension or produced from a full-length cDNA clone harbouring a 2 kb-long PCR-amplified segment are infectious. Research in Virology 144:339–348
    [Google Scholar]
  6. Bozarth C. S., Weiland J. J., Dreher T. W. 1992; Expression of ORF-69 of turnip yellow mosaic virus is necessary for viral spread in plants. Virology 187:124–130
    [Google Scholar]
  7. Bransom K. L., Dreher T. W. 1994; Identification of the essential cysteine and histidine residues of the turnip yellow mosaic virus protease. Virology 198:148–154
    [Google Scholar]
  8. Bransom K. L., Weiland J. J., Dreher T. W. 1991; Proteolytic maturation of the 206-kDa nonstructural protein encoded by turnip yellow mosaic virus RNA. Virology 184:351–358
    [Google Scholar]
  9. Breitschopf K., Bengal E., Ziv T., Admon A., Ciechanover A. 1998; A novel site for ubiquitination: the N-terminal residue, and not internal lysines of MyoD, is essential for conjugation and degradation of the protein. EMBO Journal 17:5964–5973
    [Google Scholar]
  10. Callis J., Vierstra R. D. 2000; Protein degradation in signaling. Current Opinion in Plant Biology 3:381–386
    [Google Scholar]
  11. Chen M. H., Sheng J., Hind G., Handa A. K., Citovsky V. 2000; Interaction between the tobacco mosaic virus movement protein and host cell pectin methylesterases is required for viral cell-to-cell movement. EMBO Journal 19:913–920
    [Google Scholar]
  12. Ciechanover A., Hod Y., Hershko A. 1978; A heat-stable polypeptide component of an ATP-dependent proteolytic system from reticulocytes. Biochemical and Biophysical Research Communications 81:1100–1105
    [Google Scholar]
  13. Ciechanover A., DiGiuseppe J. A., Bercovich B., Orian A., Richter J. D., Schwartz A. L., Brodeur G. M. 1991; Degradation of nuclear oncoproteins by the ubiquitin system in vitro. Proceedings of the National Academy of Sciences, USA 88:139–143
    [Google Scholar]
  14. Citovsky V., Knorr D., Schuster G., Zambryski P. 1990; The P30 movement protein of tobacco mosaic virus is a single-strand nucleic acid binding protein. Cell 60:637–647
    [Google Scholar]
  15. de Groot R. J., Rumenapf T., Kuhn R. J., Strauss E. G., Strauss J. H. 1991; Sindbis virus RNA polymerase is degraded by the N-end rule pathway. Proceedings of the National Academy of Sciences, USA 88:8967–8971
    [Google Scholar]
  16. Deom C. M., Oliver M. J., Beachy R. N. 1987; The 30-kilodalton gene product of tobacco mosaic virus potentiates virus movement. Science 237:389–394
    [Google Scholar]
  17. Estelle M. 2001; Proteases and cellular regulation in plants. Current Opinion in Plant Biology 4:254–260
    [Google Scholar]
  18. Etlinger J. D., Goldberg A. L. 1980; Control of protein degradation in reticulocytes and reticulocyte extracts by hemin. Journal of Biological Chemistry 255:4563–4568
    [Google Scholar]
  19. Glotzer M., Murray A. W., Kirschner M. W. 1991; Cyclin is degraded by the ubiquitin pathway. Nature 349:132–138
    [Google Scholar]
  20. Gonda D. K., Bachmair A., Wunning I., Tobias J. W., Lane W. S., Varshavsky A. 1989; Universality and structure of the N-end rule. Journal of Biological Chemistry 264:16700–16712
    [Google Scholar]
  21. Haas A. L., Rose I. A. 1981; Hemin inhibits ATP-dependent ubiquitin-dependent proteolysis: role of hemin in regulating ubiquitin conjugate degradation. Proceedings of the National Academy of Sciences, USA 78:6845–6848
    [Google Scholar]
  22. Harty R. N., Brown M. E., Wang G., Huibregtse J., Hayes F. P. 2000; A PPxY motif within the VP40 protein of Ebola virus interacts physically and functionally with a ubiquitin ligase: implications for filovirus budding. Proceedings of the National Academy of Sciences, USA 97:13871–13876
    [Google Scholar]
  23. Heinlein M., Epel B., Padgett H., Beachy R. 1995; Interaction of tobamovirus movement proteins with the plant cytoskeleton. Science 270:1983–1985
    [Google Scholar]
  24. Hershko A. 1996; Lessons from the discovery of the ubiquitin system. Trends in Biochemical Sciences 21:445–449
    [Google Scholar]
  25. Hershko A., Ciechanover A. 1992; The ubiquitin system for protein degradation. Annual Review of Biochemistry 61:761–807
    [Google Scholar]
  26. Hershko A., Ciechanover A. 1998; The ubiquitin system. Annual Review of Biochemistry 67:425–479
    [Google Scholar]
  27. Hershko A., Heller H. 1985; Occurrence of a polyubiquitin structure in ubiquitin–protein conjugates. Biochemical and Biophysical Research Communications 128:1079–1086
    [Google Scholar]
  28. Hershko A., Rose I. A. 1987; Ubiquitin-aldehyde: a general inhibitor of ubiquitin-recycling processes. Proceedings of the National Academy of Sciences, USA 84:1829–1833
    [Google Scholar]
  29. Hershko A., Ciechanover A., Heller H., Haas A. L., Rose I. A. 1980; Proposed role of ATP in protein breakdown: conjugation of protein with multiple chains of the polypeptide of ATP-dependent proteolysis. Proceedings of the National Academy of Sciences, USA 77:1783–1786
    [Google Scholar]
  30. Hershko A., Heller H., Elias S., Ciechanover A. 1983; Components of ubiquitin–protein ligase system. Resolution, affinity purification, and role in protein breakdown. Journal of Biological Chemistry 258:8206–8214
    [Google Scholar]
  31. Hochstrasser M. 1996; Ubiquitin-dependent protein degradation. Annual Review of Genetics 30:405–439
    [Google Scholar]
  32. Hull R. 1989; The movement of viruses in plants. Annual Review of Phytopathology 27:213–240
    [Google Scholar]
  33. Ikeda M., Ikeda A., Longan L. C., Longnecker R. 2000; The Epstein–Barr virus latent membrane protein 2A PY motif recruits WW domain-containing ubiquitin-protein ligases. Virology 268:178–191
    [Google Scholar]
  34. Johnston N. L., Cohen R. E. 1991; Uncoupling ubiquitin–protein conjugation from ubiquitin-dependent proteolysis by use of β,γ-nonhydrolyzable ATP analogues. Biochemistry 30:7514–7522
    [Google Scholar]
  35. Kawakami S., Padgett H. S., Hosokawa D., Okada Y., Beachy R. N., Watanabe Y. 1999; Phosphorylation and/or presence of serine 37 in the movement protein of tomato mosaic tobamovirus is essential for intracellular localization and stability in vivo. Journal of Virology 73:6831–6840
    [Google Scholar]
  36. Kornitzer D., Ciechanover A. 2000; Modes of regulation of ubiquitin-mediated protein degradation. Journal of Cellular Physiology 182:1–11
    [Google Scholar]
  37. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685
    [Google Scholar]
  38. Lazarowitz S. G., Beachy R. N. 1999; Viral movement proteins as probes for intracellular and intercellular trafficking in plants. Plant Cell 11:535–548
    [Google Scholar]
  39. Lee D. H., Goldberg A. L. 1996; Selective inhibitors of the proteasome-dependent and vacuolar pathways of protein degradation in Saccharomyces cerevisiae. Journal of Biological Chemistry 271:27280–27284
    [Google Scholar]
  40. Lehto K., Bubrick P., Dawson W. O. 1990a; Time course of TMV 30K protein accumulation in intact leaves. Virology 174:290–293
    [Google Scholar]
  41. Lehto K., Grantham G. L., Dawson W. O. 1990b; Insertion of sequences containing the coat protein subgenomic RNA promoter and leader in front of the tobacco mosaic virus 30K ORF delays its expression and causes defective cell-to-cell movement. Virology 174:145–157
    [Google Scholar]
  42. McLean B. G., Zupan J., Zambryski P. C. 1995; Tobacco mosaic virus movement protein associates with the cytoskeleton in tobacco cells. Plant Cell 12:2101–2114
    [Google Scholar]
  43. Maule A. J. 1991; Virus movement in infected plants. Plant Sciences 9:457–473
    [Google Scholar]
  44. Mimnaugh E. G., Bonvini P., Neckers L. 1999; The measurement of ubiquitin and ubiquitinated proteins. Electrophoresis 20:418–428
    [Google Scholar]
  45. Morch M. D., Boyer J. C., Haenni A. L. 1988; Overlapping open reading frames revealed by complete nucleotide sequencing of turnip yellow mosaic virus genomic RNA. Nucleic Acids Research 16:6157–6173
    [Google Scholar]
  46. Morch M. D., Drugeon G., Szafranski P., Haenni A. L. 1989; Proteolytic origin of the 150-kilodalton protein encoded by turnip yellow mosaic virus genomic RNA. Journal of Virology 63:5153–5158
    [Google Scholar]
  47. Mushegian A. R., Koonin E. V. 1993; Cell-to-cell movement of plant viruses. Insights from amino acid sequence comparisons of movement proteins and from analogies with cellular transport systems. Archives of Virology 133:239–257
    [Google Scholar]
  48. Oberst M. D., Gollan T. J., Gupta M., Peura S. R., Zydlewski J. D., Sudarsanan P., Lawson T. G. 1993; The encephalomyocarditis virus 3C protease is rapidly degraded by an ATP-dependent proteolytic system in reticulocyte lysate. Virology 193:28–40
    [Google Scholar]
  49. Orian A., Whiteside S., Israël A., Stancovski I., Schwartz A. L., Ciechanover A. 1995; Ubiquitin-mediated processing of NF-κB transcriptional activator precursor p105. Journal of Biological Chemistry 270:21707–21714
    [Google Scholar]
  50. Pickart C. M. 1997; Targeting of substrates to the 26S proteasome. FASEB Journal 11:1055–1066
    [Google Scholar]
  51. Rechsteiner M., Rogers S. W. 1996; PEST sequences and regulation by proteolysis. Trends in Biochemical Sciences 21:267–271
    [Google Scholar]
  52. Reichel C., Beachy R. N. 2000; Degradation of tobacco mosaic virus movement protein by the 26S proteasome. Journal of Virology 74:3330–3337
    [Google Scholar]
  53. Reinstein E., Scheffner M., Oren M., Ciechanover A., Schwartz A. 2000; Degradation of the E7 human papillomavirus oncoprotein by the ubiquitin-proteasome system: targeting via ubiquitination of the N-terminal residue. Oncogene 19:5944–5950
    [Google Scholar]
  54. Rhee Y., Tzfira T., Chen M. H., Waigmann E., Citovsky V. 2000; Cell-to-cell movement of tobacco mosaic virus: enigmas and explanations. Molecular Plant Pathology 1:33–39
    [Google Scholar]
  55. Rote K., Rogers S., Pratt G., Rechsteiner M. 1989; Degradation of structurally characterized proteins injected into HeLa cells. Comparison with their stability in rabbit reticulocyte lysate. Journal of Biological Chemistry 264:9772–9779
    [Google Scholar]
  56. Rozanov M. N., Drugeon G., Haenni A.-L. 1995; Papain-like proteinase of turnip yellow mosaic virus: a prototype of a new viral proteinase group. Archives of Virology 140:4545–4552
    [Google Scholar]
  57. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  58. Scheffner M., Werness B. A., Huibregtse J. M., Levine A. J., Howley P. M. 1990; The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 63:1129–1136
    [Google Scholar]
  59. Schubert U., Anton L. C., Bacik I., Cox J. H., Bour S., Bennink J. R., Orlowski M., Strebel K., Yewdell J. W. 1998; CD4 glycoprotein degradation induced by human immunodeficiency virus type 1 Vpu protein requires the function of proteasomes and the ubiquitin-conjugating pathway. Journal of Virology 72:2280–2288
    [Google Scholar]
  60. Séron K., Bernasconi L., Allet B., Haenni A. 1996; Expression of the 69K movement protein of turnip yellow mosaic virus in insect cells. Virology 219:274–278
    [Google Scholar]
  61. Varshavsky A. 1996; The N-end rule: functions, mysteries, uses. Proceedings of the National Academy of Sciences, USA 93:12142–12149
    [Google Scholar]
  62. Varshavsky A. 1997; The ubiquitin system. Trends in Biochemical Sciences 22:383–387
    [Google Scholar]
  63. Vierstra R. D. 1996; Proteolysis in plants: mechanisms and functions. Plant Molecular Biology 32:275–302
    [Google Scholar]
  64. Voges D., Zwickl P., Baumeister W. 1999; The 26S proteasome: a molecular machine designed for controlled proteolysis. Annual Review of Biochemistry 68:1015–1068
    [Google Scholar]
  65. von Kampen J., Wettern M., Schulz M. 1996; The ubiquitin system in plants. Physiologia Plantarum 97:618–624
    [Google Scholar]
  66. Watanabe Y., Ogawa T., Okada Y. 1992; In vivo phosphorylation of the 30-kDa protein of tobacco mosaic virus. FEBS Letters 313:181–184
    [Google Scholar]
  67. Wolf S., Deom C. M., Beachy R. N., Lucas W. J. 1989; Movement protein of tobacco mosaic virus modifies plasmodesmatal size exclusion limit. Science 246:377–379
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-83-12-3187
Loading
/content/journal/jgv/10.1099/0022-1317-83-12-3187
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error