1887

Abstract

In the search for Type II polyketide synthases (PKSs) a DNA fragment was isolated from ATCC 11891 (a producer of oleandomycin). DNA sequencing of the cloned fragment revealed six complete ORFs whose deduced products showed similarities to those of other genes known to be involved in polyketide biosynthesis. Several strains mutated in different steps of actinorhodin biosynthesis (, , and ) were complemented by the cloned genes, suggesting that the isolated genes encode an aromatic polyketide of unknown structure and function. The cluster also contains a putative LysR-type transcriptional regulator (ORF0), which controls PKS gene expression in a heterologous host. DNA binding assays and transcriptional analysis suggest that the pathway-specific regulator for actinorhodin biosynthesis (-ORF4) is also involved in the expression of the cloned PKS in the host strain.

Loading

Article metrics loading...

/content/journal/micro/10.1099/00221287-147-11-3083
2001-11-01
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/147/11/1473083a.html?itemId=/content/journal/micro/10.1099/00221287-147-11-3083&mimeType=html&fmt=ahah

References

  1. Arias, P., Fernández-Moreno, M. A. & Malpartida, F. (1999). Characterization of the pathway-specific positive transcriptional regulator for actinorhodin biosynthesis in Streptomyces A3(2) as a DNA-binding protein. J Bacteriol 181, 6958-6968. [Google Scholar]
  2. Bartel, P. L., Zung, C. H., Lampel, J. S., Dosch, D. C., Connors, N. C., Strohl, W. R., Beale, J. J. M. & Floss, H. G. (1990). Biosynthesis of anthraquinones by interspecific cloning of actinorhodin biosynthesis genes in streptomycetes: clarification of actinorhodin gene function. J Bacteriol 172, 4816-4826. [Google Scholar]
  3. Bibb, M. (1996). The regulation of antibiotic production in Streptomyces coelicolor A3(2). Microbiology 142, 1335-1344.[CrossRef] [Google Scholar]
  4. Bibb, M. J., Biro, S., Motamedi, H., Collins, J. F. & Hutchinson, C. R. (1989). Analysis of the nucleotide sequence of the Streptomyces glaucescens tcmI gene provides key information about the enzymology of polyketide antibiotic biosynthesis. EMBO J 8, 2727-2736. [Google Scholar]
  5. Bisang, C., Long, P. F., Corts, J. & 7 other authors (1999). A chain initiation factor common to both modular and aromatic polyketide synthases. Nature 401, 502–505.[CrossRef] [Google Scholar]
  6. Blanco, G., Pereda, A., Méndez, C. & Salas, J. A. (1992). Cloning and disruption of a fragment of Streptomyces halstedii DNA involved in the biosynthesis of a spore pigment. Gene 112, 59-65.[CrossRef] [Google Scholar]
  7. Blanco, G., Brian, P., Pereda, A., Méndez, C., Salas, J. A. & Chater, K. F. (1993). Hybridization and DNA sequence analyses suggest an early evolutionary divergence of related biosynthetic gene sets encoding polyketide antibiotics and spore pigments in Streptomyces spp. Gene 130, 107-116.[CrossRef] [Google Scholar]
  8. Chakraburtty, R., White, J., Takano, E. & Bibb, M. (1996). Cloning, characterization and disruption of a (p)ppGpp synthetase gene (relA) of Streptomyces coelicolor A3(2). Mol Microbiol 19, 357-368.[CrossRef] [Google Scholar]
  9. Chater, K. F., Bruton, C. J., King, A. A. & Suárez, J. E. (1982). The expression of Streptomyces and Escherichia coli drug-resistance determinants cloned into the Streptomyces phage ϕ C31. Gene 19, 21-32.[CrossRef] [Google Scholar]
  10. Davis, N. K. & Chater, K. F. (1990). Spore colour in Streptomyces coelicolor A3(2) involves the developmentally regulated synthesis of a compound biosynthetically related to polyketide antibiotics. Mol Microbiol 4, 1679-1691.[CrossRef] [Google Scholar]
  11. Decker, H. & Hutchinson, C. R. (1993). Transcriptional analysis of the Streptomyces glaucescens tetracenomycin-C biosynthesis gene cluster. J Bacteriol 175, 3887-3892. [Google Scholar]
  12. Devereux, J., Haeberli, P. & Smithies, O. (1984). A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12, 387-395.[CrossRef] [Google Scholar]
  13. Downie, J. A. & Johnson, A. W. (1986). Nodulation of legumes by Rhizobium: the recognized roots? Cell 47, 153-154. [Google Scholar]
  14. Feitelson, J. S. & Hopwood, D. A. (1983). Cloning of a Streptomyces gene for an O-methyltransferase involved in antibiotic biosynthesis. Mol Gen Genet 190, 394-398.[CrossRef] [Google Scholar]
  15. Fernández-Moreno, M. A., Caballero, J. L., Hopwood, D. A. & Malpartida, F. (1991). The act cluster contains regulatory and antibiotic export genes, direct targets for transcriptional control by the bldA transfer RNA gene of Streptomyces coelicolor. Cell 66, 769-780.[CrossRef] [Google Scholar]
  16. Fernández-Moreno, M. A., Martı́nez, E., Boto, L., Hopwood, D. A. & Malpartida, F. (1992). Nucleotide sequence and deduced function of a set of co-transcribed genes of Streptomyces coelicolor A3(2) including the polyketide synthase for the antibiotic actinorhodin. J Biol Chem 267, 19278-19290. [Google Scholar]
  17. Frichauf, A. M., Lehrach, H., Poustka, A. M. & Murray, N. (1983). Lambda replacement vectors carrying polylinker sequences. J Mol Biol 170, 827-842.[CrossRef] [Google Scholar]
  18. Hallam, S. E., Malpartida, F. & Hopwood, D. A. (1988). Nucleotide sequence, transcription and deduced function of a gene involved in polyketide antibiotic synthesis in Streptomyces coelicolor. Gene 74, 305-320.[CrossRef] [Google Scholar]
  19. Hong, S. K., Kito, M., Beppu, T. & Horinouchi, S. (1991). Phosphorylation of the AfsR product, a global regulatory protein for secondary-metabolite formation in Streptomyces coelicolor A3(2). J Bacteriol 173, 2311-2318. [Google Scholar]
  20. Hopwood, D. A. (1997). Genetic contribution to understanding polyketide synthase. Chem Rev 97, 2465-2497.[CrossRef] [Google Scholar]
  21. Hopwood, D. A., Bibb, M. J., Chater, K. F. & 7 other authors (1985).Genetic Manipulation of Streptomyces: a Laboratory Manual. Norwich: John Innes Foundation.
  22. Ichinose, K., Bedford, D. J., Bibb, M. J., Revill, W. P. & Hopwood, D. A. (1998). The granaticin biosynthetic gene cluster of Streptomyces violaceoruber Tü22: sequence analysis and expression in a heterologous host. Chem Biol 5, 647-659.[CrossRef] [Google Scholar]
  23. Ishizuka, H., Horinouchi, S., Kieser, H. M., Hopwood, D. A. & Beppu, T. (1992). A putative two-component regulatory system involved in secondary metabolism in Streptomyces spp. J Bacteriol 174, 7585-7594. [Google Scholar]
  24. Lawlor, E. J., Baylis, H. A. & Chater, K. F. (1987). Pleiotropic morphological and antibiotic deficiencies result from mutations in a gene encoding a tRNA-like product in Streptomyces coelicolor A3(2). Genes Dev 1, 1305-1310.[CrossRef] [Google Scholar]
  25. Lombó, F., Blanco, G., Fernández, E., Méndez, C. & Salas, J. A. (1996). Characterization of Streptomyces argillaceus genes encoding a polyketide synthase involved in the biosynthesis of the antitumour mithramycin. Gene 172, 87-91.[CrossRef] [Google Scholar]
  26. Lombó, F., Siems, K., Braña, A. F., Méndez, C., Bindseil, K. & Salas, J. A. (1997). Cloning and insertional inactivation of Streptomyces argillaceus genes involved in the earliest steps of biosynthesis of the sugar moieties of the antitumour polyketide mithramycin. J Bacteriol 179, 3354-3357. [Google Scholar]
  27. Lombó, F., Braña, A. F., Méndez, C. & Salas, J. A. (1999). The mithramycin gene cluster of Streptomyces argillaceus contains a positive regulatory gene and two repeated DNA sequences that are located at both ends of the cluster. J Bacteriol 181, 642-647. [Google Scholar]
  28. Lydiate, D. J., Malpartida, F. & Hopwood, D. A. (1985). The Streptomyces plasmid SCP2*: its functional analysis and development into useful cloning vectors. Gene 35, 223-235.[CrossRef] [Google Scholar]
  29. McDaniel, R., Ebert-Khosla, S., Fu, H., Hopwood, D. A. & Khosla, C. (1994). Engineered biosynthesis of novel polyketides: influence of a downstream enzyme on the catalytic specificity of a minimal aromatic polyketide synthase. Proc Natl Acad Sci USA 91, 11542-11546.[CrossRef] [Google Scholar]
  30. Malpartida, F. & Hopwood, D. A. (1984). Molecular cloning of the whole biosynthetic pathway of a Streptomyces antibiotic and its expression in a heterologous host. Nature 309, 462-464.[CrossRef] [Google Scholar]
  31. Malpartida, F., Hallam, S. E., Kieser, H. M. & 9 other authors (1987). Homology between Streptomyces genes coding for synthesis of different polyketides used to clone antibiotic biosynthetic genes. Nature 325, 818–821.[CrossRef] [Google Scholar]
  32. Maniatis, T., Fritsch, E. F. & Sambrook, J. (1989).Molecular Cloning: a Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  33. Martı́nez-Costa, O. H., Arias, P., Romero, N. M., Parro, V., Mellado, R. P. & Malpartida, F. (1996). A relA/spoT homologous gene from Streptomyces coelicolor A3(2) controls antibiotic biosynthetic genes. J Biol Chem 271, 10627-10634.[CrossRef] [Google Scholar]
  34. Martı́nez-Costa, O. H., Martı́n-Triana, A. J., Martı́nez, E., Fernández-Moreno, M. A. & Malpartida, F. (1999). An additional regulatory gene for actinorhodin production in Streptomyces lividans involves a LysR-type transcriptional regulator. J Bacteriol 181, 4353-4364. [Google Scholar]
  35. Maxam, A. M. & Gilbert, W. (1980). Sequencing end-labelled DNA with base specific chemical cleavages. Methods Enzymol 65, 449-560. [Google Scholar]
  36. Motamedi, H. & Hutchinson, C. R. (1987). Cloning and heterologous expression of a gene cluster for the biosynthesis of tetracenomycin C, the anthracycline antitumour antibiotic of Streptomyces glaucescens. Proc Natl Acad Sci USA 84, 4445-4449.[CrossRef] [Google Scholar]
  37. Murray, G. M. G. (1986). Use of sodium trichloroacetate and mung bean nuclease to increase sensitivity and precision during transcript mapping. Annu Rev Biochem 158, 165-170.[CrossRef] [Google Scholar]
  38. Narva, K. E. & Feitelson, J. S. (1990). Nucleotide sequence and transcriptional analysis of the redD locus of Streptomyces coelicolor A3(2). J Bacteriol 172, 326-333. [Google Scholar]
  39. Otten, S. L., Liu, X. C., Ferguson, J. & Hutchinson, C. R. (1995). Cloning and characterization of the Streptomyces peucetius dnrQS genes encoding a daunosamine biosynthesis enzyme and a glycosyl transferase involved in daunorubicin biosynthesis. J Bacteriol 177, 6688-6692. [Google Scholar]
  40. Saiki, R. K., Gelfand, D. H., Stoffel, S., Scharf, S. J., Higuchi, R., Horn, G. T., Mullis, K. B. & Erlich, H. A. (1988). Primer-directed enzymatic amplification of DNA with a thermo-stable DNA polymerase. Science 239, 487-491.[CrossRef] [Google Scholar]
  41. Sanger, F., Nicklen, S. & Coulson, A. R. (1977). DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74, 5463-5467.[CrossRef] [Google Scholar]
  42. Schell, M. A. (1993). Molecular biology of the LysR family of transcriptional regulators. Annu Rev Microbiol 47, 597-626.[CrossRef] [Google Scholar]
  43. Scheu, A. K., Martı́nez, E., Soliveri, J. & Malpartida, F. (1997).abaB, a putative regulator for secondary metabolism in Streptomyces. FEMS Microbiol Lett 147, 29-36.[CrossRef] [Google Scholar]
  44. Sherman, D. A., Bibb, M. J., Simpson, T. J., Johnson, D., Malpartida, F., Fernández-Moreno, M. A., Martı́nez, E., Hutchinson, C. R. & Hopwood, D. A. (1991). Molecular genetic analysis reveals a putative bifunctional polyketide cyclase/dehydrase gene from Streptomyces coelicolor and Streptomyces violaceorruber and a cyclase/O-methyltransferase from Streptomyces glaucescens. Tetrahedron 47, 6029-6043.[CrossRef] [Google Scholar]
  45. Sherman, D. H., Malpartida, F., Bibb, M. J., Kieser, H. M., Bibb, M. J. & Hopwood, D. A. (1989). Structure and deduced function of the granaticin-producing polyketide synthase gene cluster of Streptomyces violaceoruber Tü22. EMBO J 8, 2717-2725. [Google Scholar]
  46. Strauch, E., Takano, E., Baylis, H. A. & Bibb, M. J. (1991). The stringent response in Streptomyces coelicolor A3(2). Mol Microbiol 5, 289-298.[CrossRef] [Google Scholar]
  47. Stutzman-Engwall, K. J. & Hutchinson, C. R. (1989). Multigene families for anthracycline antibiotic production in Streptomyces peucetius. Proc Natl Acad Sci USA 86, 3135-3139.[CrossRef] [Google Scholar]
  48. Stutzman-Engwall, K. J., Otten, S. L. & Hutchinson, C. R. (1992). Regulation of secondary metabolism in Streptomyces spp. and overproduction of daunorubicin in Streptomyces peucetius. J Bacteriol 174, 144-154. [Google Scholar]
  49. Swan, D. G., Rodrı́guez, A. M., Vilches, C., Méndez, C. & Salas, J. A. (1994). Characterisation of a Streptomyces antibioticus gene encoding a Type I polyketide synthase which has an unusual coding sequence. Mol Gen Genet 242, 358-362.[CrossRef] [Google Scholar]
  50. Westrich, L., Domann, S., Faust, B., Bedford, D., Hopwood, D. A. & Bechthold, A. (1999). Cloning and characterization of a gene cluster from Streptomyces cyanogenus S136 probably involved in landomycin biosynthesis. FEMS Microbiol Lett 170, 381-387.[CrossRef] [Google Scholar]
  51. Wietzorrek, A. & Bibb, M. (1997). A novel family of proteins that regulates antibiotic production in streptomycetes appears to contain an OmpR-like DNA-binding fold. Mol Microbiol 25, 1177-1184. [Google Scholar]
  52. Wright, F. & Bibb, M. J. (1992). Codon usage in the G+T rich Streptomyces genome. Gene 113, 55-65.[CrossRef] [Google Scholar]
  53. Yanisch-Perron, C., Vieira, J. & Messing, J. (1985). Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33, 103-119.[CrossRef] [Google Scholar]
  54. Zaballos, A., Salas, M. & Mellado, R. P. (1987). A set of expression plasmids for the synthesis of fused and unfused polypeptides in Escherichia coli. Gene 58, 67-76.[CrossRef] [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/00221287-147-11-3083
Loading
/content/journal/micro/10.1099/00221287-147-11-3083
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error