1887

Abstract

The (p)ppGpp synthetase gene, of was cloned, sequenced and shown to be located in a genomic region that is highly conserved in other species. -disrupted and -deleted mutants of were constructed, and both were unable to form aerial mycelium or to sporulate, but regained these abilities when complemented with wild-type . Neither ppGpp nor pppGpp was detected in the -deletion mutant. In contrast to another study, clavulanic acid and cephamycin C production increased markedly in the mutants compared to the wild-type strain; clavulanic acid production increased three- to fourfold, while that of cephamycin C increased about 2.5-fold. Complementation of the -null mutants with wild-type decreased antibiotic yields to approximately wild-type levels. Consistent with these observations, transcription of genes involved in clavulanic acid () or cephamycin C () production increased dramatically in the -deleted mutant when compared to the wild-type strain. These results are entirely consistent with the growth-associated production of both cephamycin C and clavulanic acid, and demonstrate, apparently for the first time, negative regulation of secondary metabolite biosynthesis by (p)ppGpp in a species of industrial interest.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/011890-0
2008-03-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/3/744.html?itemId=/content/journal/micro/10.1099/mic.0.2007/011890-0&mimeType=html&fmt=ahah

References

  1. Bascarán V., Sánchez L., Hardisson C., Braña A. F. 1991; Stringent response and initiation of secondary metabolism in Streptomyces clavuligerus . J Gen Microbiol 137:1625–1634
    [Google Scholar]
  2. Bignell D. R. D., Tahlan K., Colvin K. R., Jensen S. E., Leskiw B. K. 2005; Expression of ccaR , encoding the positive activator of cephamycin C and clavulanic acid production in Streptomyces clavuligerus , is dependent on bldG . Antimicrob Agents Chemother 49:1529–1541
    [Google Scholar]
  3. Braeken K., Moris M., Daniels R., Vanderleyden J., Michels J. 2006; New horizons for (p)ppGpp in bacterial and plant physiology. Trends Microbiol 14:45–54
    [Google Scholar]
  4. Burton K. 1968; Determination of DNA concentration with diphenylamine. Methods Enzymol 12B:163–166
    [Google Scholar]
  5. Cashel M., Kabalcher B. 1970; The control of ribonucleic acid synthesis in Escherichia coli . Characterization of a nucleotide associated with the stringent response. J Biol Chem 245:2309–2318
    [Google Scholar]
  6. Cashel M., Gentry D. R., Hernández V. J., Vinella D. others 1996; The stringent response. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology pp 1458–1496 Edited by Neidhardt F. C. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  7. Chakraburtty R., Bibb M. 1997; The ppGpp synthetase gene ( relA ) of Streptomyces coelicolor A3(2) plays a conditional role in antibiotic production and morphological differentiation. J Bacteriol 179:5854–5861
    [Google Scholar]
  8. Chakraburtty R., White J., Takano E., Bibb M. 1996; Cloning, characterization and disruption of a (p)ppGpp synthetase gene ( relA ) of Streptomyces coelicolor A3(2. Mol Microbiol 19:357–368
    [Google Scholar]
  9. Gomez-Escribano J. P., Liras P., Pisabarro A., Martín J. F. 2006; An rplK Δ29-PALG-32 mutation leads to reduced expression of the regulatory genes ccaR and claR and very low transcription of the ceaS2 gene for clavulanic acid biosynthesis in Streptomyces clavuligerus . Mol Microbiol 61:758–770
    [Google Scholar]
  10. Gust B., Challis G. L., Fowler K., Kieser T., Chater K. F. 2003; PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proc Natl Acad Sci U S A 100:1541–1546
    [Google Scholar]
  11. Haseltine W. A., Block R., Gilbert W., Weber K. 1972; MSI and MSII are made on the ribosome in an idling reaction of protein synthesis. Nature 238:381–385
    [Google Scholar]
  12. Higgins D. G., Sharp P. M. 1989; clustal: a package for performing multiple sequence alignment on a microcomputer. Gene 73:237–244
    [Google Scholar]
  13. Hoyt S., Jones G. H. 1999; relA is required for actinomycin production in Streptomyces antibioticus . J Bacteriol 181:3824–3829
    [Google Scholar]
  14. Jin W., Ryu Y. G., Kang S. G., Kim S. K., Saito N., Ochi K., Lee S. H., Lee K. J. 2004; Two relA/spoT homologous genes are involved in the morphological and physiological differentiation of Streptomyces clavuligerus . Microbiology 150:1485–1493
    [Google Scholar]
  15. Jones D., Thompson A., England R. 1996; Guanosine 5′-diphosphate 3′-diphosphate (ppGpp), guanosine 5′-diphosphate 3′-monophosphate (ppGp) and antibiotic production in Streptomyces clavuligerus . Microbiology 142:1789–1795
    [Google Scholar]
  16. Jones D., Thompson A., England R. 1997; Guanosine 5′-diphosphate 3′-diphosphate (ppGpp) and clavulanic acid production in Streptomyces clavuligerus . World J Microbiol Biotechnol 13:633–636
    [Google Scholar]
  17. Kieser T., Bibb M. J., Buttner M. J., Chater K. F., Hopwood D. A. 2000 Practical Streptomyces Genetics Norwich, UK: John Innes Foundation;
    [Google Scholar]
  18. Kovacevic S., Tobin M. B., Miller J. R. 1990; The beta lactam biosynthesis genes for isopenicillin N epimerase and deacetoxycephalosporin C synthetase are expressed from a single transcript in Streptomyces clavuligerus . J Bacteriol 172:3952–3958
    [Google Scholar]
  19. Liras P. 1999; Biosynthesis and molecular genetics of cephamycins. Cephamycins produced by actinomycetes. Antonie Van Leeuwenhoek 75:109–124
    [Google Scholar]
  20. Liras P., Martín J. F. 2005; Assay methods for detection and quantification of antimicrobial metabolites produced by Streptomyces clavuligerus . Methods Biotechnol 18:149–163
    [Google Scholar]
  21. Liras P., Rodríguez-García A. 2000; Clavulanic acid, a beta-lactamase inhibitor: biosynthesis and molecular genetics. Appl Microbiol Biotechnol 54:467–475
    [Google Scholar]
  22. Lorenzana L. M., Pérez-Redondo R., Santamarta I., Martín J. F., Liras P. 2004; Two oligopeptide-permease-encoding genes in the clavulanic acid cluster of Streptomyces clavuligerus are essential for production of the beta-lactamase inhibitor. J Bacteriol 186:3431–3438
    [Google Scholar]
  23. Magnusson L. U., Farewell A., Nyström T. 2005; ppGpp: a global regulator in Escherichia coli . Trends Microbiol 13:236–242
    [Google Scholar]
  24. Martínez-Costa O. H., Arias P., Romero N. M., Parro V., Mellado R. P., Malpartida F. 1996; A relA/spoT -homologous gene from Streptomyces coelicol or A3(2) controls antibiotic biosynthesis genes. J Biol Chem 271:10627–10634
    [Google Scholar]
  25. Martínez-Costa O. H., Fernández-Moreno M. A., Malpartida F. 1998; The relA/spoT -homologous gene in Streptomyces coelicolor encodes both ribosome-dependent (p)ppGpp-synthesizing and degrading activities. J Bacteriol 180:4123–4132
    [Google Scholar]
  26. Mechold U., Cashel M., Steiner K., Gentry D., Malke H. 1996; Functional analysis of a relA/spoT gene homolog from Streptococcus equisimilis . J Bacteriol 178:1401–1411
    [Google Scholar]
  27. Mullis K. B., Faloona F. A. 1987; Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol 155:335–350
    [Google Scholar]
  28. Ochi K. 1986; Occurrence of the stringent response in Streptomyces sp. and its significance for the initiation of morphological and physiological differentiation. J Gen Microbiol 132:2621–2631
    [Google Scholar]
  29. Ochi K. 1990; A relaxed ( rel) mutant of Streptomyces coelicolor A3(2) with a missing ribosomal protein lacks the ability to accumulate ppGpp, A-factor and prodigiosin. J Gen Microbiol 136:2405–2412
    [Google Scholar]
  30. Paradkar A. S., Jensen S. E. 1998; A pathway-specific transcriptional activator regulates late steps of clavulanic acid biosynthesis in Streptomyces clavuligerus . Mol Microbiol 27:831–843
    [Google Scholar]
  31. Pérez-Llarena F. J., Liras P., Rodríguez-García A., Martín J. F. 1997; A regulatory gene ( cca R) required for cephamycin and clavulanic acid production in Streptomyces clavuligerus : amplification results in overproduction of both β -lactam compounds. J Bacteriol 179:2053–2059
    [Google Scholar]
  32. Pérez-Redondo R., Rodríguez-García A., Martín J. F., Liras P. 1998; The claR gene of Streptomyces clavuligerus , encoding a LysR-type regulatory protein controlling clavulanic acid biosynthesis, is linked to the clavulanate-9-aldehyde reductase ( car ) gene. Gene 211:311–321
    [Google Scholar]
  33. Riesenberg D., Bergter F., Kari C. 1984; Effect of serine hydroxamate and methyl α -d-glucopyranoside treatment on nucleoside polyphosphate pools, RNA and protein accumulation in Streptomyces hygroscopicus . J Gen Microbiol 130:2549–2558
    [Google Scholar]
  34. Rodríguez-García A., Combes P., Pérez-Redondo R., Smith M. C. A., Smith M. C. M. 2005; Natural and synthetic tetracycline-inducible promoters for use in the antibiotic-producing bacteria Streptomyces . Nucleic Acids Res 33:e87
    [Google Scholar]
  35. Rodríguez-García A., Santamarta I., Pérez-Redondo R., Martín J. F., Liras P. 2006; Characterization of a two-gene operon epeRA involved in multidrug resistance in Streptomyces clavuligerus . Res Microbiol 157:559–568
    [Google Scholar]
  36. Sambrook J., Fritsch E. F., Maniatis J. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  37. Sánchez L., Braña A. F. 1996; Cell density influences antibiotic biosynthesis in Streptomyces clavuligerus . Microbiology 142:1209–1220
    [Google Scholar]
  38. Sun J., Hesketh A., Bibb M. 2001; Functional analysis of relA and rshA , two relA/spoT homologues of Streptomyces coelicolor A3(2. J Bacteriol 183:3488–3498
    [Google Scholar]
  39. Sy J. 1977; In vitro degradation of guanosine 5′-diphosphate,3′-diphosphate. Proc Natl Acad Sci U S A 74:5529–5533
    [Google Scholar]
  40. Tahlan K., Park H. U., Wong A., Beatty P. H., Jensen S. E. 2004; Two sets of paralogous genes encode the enzymes involved in the early stages of clavulanic acid and clavam metabolite biosynthesis in Streptomyces clavuligerus . Antimicrob Agents Chemother 48:930–939
    [Google Scholar]
  41. Wang L., Tahlan K., Kaziuk T. L., Alexander D. C., Jensen S. E. 2004; Transcriptional and translational analysis of the ccaR gene from Streptomyces clavuligerus . Microbiology 150:4137–4145
    [Google Scholar]
  42. Wendrich T. M., Marahiel M. A. 1997; Cloning and characterization of a relA/spoT homologue from Bacillus subtilis . Mol Microbiol 26:65–79
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/011890-0
Loading
/content/journal/micro/10.1099/mic.0.2007/011890-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error