1887

Abstract

is known to flourish in extreme salt environments. Recently, this halophilic bacterium also appeared as the dominant microflora during storage of sugar thick juice, an intermediate product of beet sugar production. Although can cause degradation of thick juice, dominance of this bacterium does not always result in degradation. In this study strains from high-salt and high-sugar environments, and in particular from degraded and non-degraded thick juice, were compared in detail. Both physiological and genetic characterization using Biolog, repetitive PCR fingerprinting (rep-PCR) and random amplified polymorphic DNA (RAPD) technology, revealed clear differences between strains isolated from salt- and sugar-rich environments. However, no strain pattern could be specifically and systematically associated with degraded or non-degraded thick juice. Remarkably, halophilic strains were not able to grow in sugar thick juice. Irrespective of the differences between the strains from high-salt or high-sugar environments, DNA–DNA hybridization grouped all strains within the species , except one isolate from sugar thick juice that showed different physiological and genetic characteristics, and that may represent a new species of .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2008/018168-0
2008-09-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/9/2600.html?itemId=/content/journal/micro/10.1099/mic.0.2008/018168-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402
    [Google Scholar]
  2. Benson D. A., Karsch-Mizrachi I., Lipman D. J., Ostell J., Wheeler D. L. 2004; Genbank: update. Nucleic Acids Res 32:D23–D26
    [Google Scholar]
  3. Bochner B. 1989; Breathprints at the microbial level. An automated redox-based technology quickly identifies bacteria according to their metabolic capacities. ASM News 55:536–539
    [Google Scholar]
  4. Chen Y.-S., Yanagida F., Hsu J.-S. 2006; Isolation and characterization of lactic acid bacteria from suan-tsai (fermented mustard), a traditional fermented food in Taiwan. J Appl Microbiol 101:125–130
    [Google Scholar]
  5. Cleenwerck I., Vandemeulebroecke K., Janssens D., Swings J. 2002; Re-examination of the genus Acetobacter , with descriptions of Acetobacter cerevisiae sp. nov. and Acetobacter malorum sp. nov. Int J Syst Evol Microbiol 52:1551–1558
    [Google Scholar]
  6. Collins M. D., Williams A. M., Wallbanks S. 1990; The phylogeny of Aerococcus and Pediococcus as determined by 16S rRNA sequence analysis: description of Tetragenococcus gen. nov. FEMS Microbiol Lett 58:255–262
    [Google Scholar]
  7. Dyble J., Paerl H. W., Neilan B. A. 2002; Genetic characterization of Cylindrospermopsis raciborskii (Cyanobacteria) isolates from diverse geographic origins based on nifH and cpcBA -IGS nucleotide sequence analysis. Appl Environ Microbiol 68:2567–2571
    [Google Scholar]
  8. Ennahar S., Cai Y. 2005; Biochemical and genetic evidence for the transfer of Enterococcus solitarius Collins et al. 1989 to the genus Tetragenococcus as Tetragenococcus solitarius comb. nov. Int J Syst Evol Microbiol 55:589–592
    [Google Scholar]
  9. Ezaki T., Hashimoto T., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229
    [Google Scholar]
  10. Goris J., Suzuki K., De Vos P., Nakase T., Kersters K. 1998; Evaluation of a microplate DNA-DNA hybridization method compared with the initial renaturation method. Can J Microbiol 44:1148–1153
    [Google Scholar]
  11. Grant W. D. 2004; Life at low water activity. Philos Trans R Soc Lond B Biol Sci 359:1249–1267
    [Google Scholar]
  12. Ito H., Hadioetomo R. S., Nikkuni S., Okada N. 1985; Studies on lactic acid bacteria in fish sauces (part 2). Identification of salt-tolerance and acid-producing bacteria from fish sauces. Rep Natl Food Res Inst 47:31–40
    [Google Scholar]
  13. Johnson A. R., Ogrydziak D. M. 1984; Genetic adaptation to elevated carbon dioxide atmospheres by Pseudomonas -like bacteria isolated from rock cod ( Sebastes spp). Appl Environ Microbiol 48:486–490
    [Google Scholar]
  14. Justé A., Krause M. S., Lievens B., Klingeberg M., Michiels C. W., Willems K. A. 2008a; Protective effect of hop β -acids on microbial degradation of thick juice during storage. J Appl Microbiol 104:51–59
    [Google Scholar]
  15. Justé A., Lievens B., Klingeberg M., Michiels C. W., Marsh T. L., Willems K. A. 2008b; Predominance of Tetragenococcus halophilus as the cause of sugar thick juice degradation. Food Microbiol 25:413–421
    [Google Scholar]
  16. Kanbe C., Uchida K. 1982; Diversity in the metabolism of organic acids by Pediococcus halophilus . Agric Biol Chem 46:2357–2359
    [Google Scholar]
  17. Kobayashi T., Kimura B., Fuji T. 2000; Differentiation of Tetragenococcus populations occurring in products and manufacturing processes of puff fish ovaries fermented with rice-bran. Int J Food Microbiol 56:211–218
    [Google Scholar]
  18. Kobayashi T., Kajiwara M., Wahyuni M., Kitakado T., Hamada-Sato N., Imada C., Watanabe E. 2003; Isolation and characterization of halophilic lactic acid bacteria isolated from “terasi” shrimp paste: a traditional fermented seafood product in Indonesia. J Gen Appl Microbiol 49:279–286
    [Google Scholar]
  19. Kushner D. J. 1978; Life in high salt and solute concentrations. In Microbial Life in Extreme Environments pp 318–368 Edited by Kushner D. J. London: Academic Press;
    [Google Scholar]
  20. Laloknam S., Tanaka K., Buaboocha T., Waditee R., Incharoensakdi A., Takashi Hibino T., Tanaka Y., Takabe T. 2006; Halotolerant cyanobacterium Aphanothece halophytica contains a betaine transporter active at alkaline pH and high salinity. Appl Environ Microbiol 72:6018–6026
    [Google Scholar]
  21. Lane D. J. 1991; 16S and 23S rRNA sequencing. In Nucleic Acids Techniques in Bacterial Systematics pp 115–175 Edited by Stackebrandt E., Goodfellow M. Chichester, UK: Wiley;
    [Google Scholar]
  22. Lane S., Evermann J., Loge F., Call D. R. 2004; Amplicon secondary structure prevents target hybridisation to oligonucleotide microarrays. Biosens Bioelectron 20:728–735
    [Google Scholar]
  23. Lee M., Kim M. K., Vancanneyt M., Swings J., Kim S. H., Kang M. S., Lee S. T. 2005; Tetragenococcus koreensis sp. nov., a novel rhamnolipid-producing bacterium. Int J Syst Evol Microbiol 55:1409–1413
    [Google Scholar]
  24. Lievens B., Brouwer M., Vanachter A. C. R. C., Lévesque C. A., Cammue B. P. A., Thomma B. P. H. J. 2003; Design and development of a DNA array for rapid detection and identification of multiple tomato vascular wilt pathogens. FEMS Microbiol Lett 223:113–122
    [Google Scholar]
  25. McCue K. F., Hanson A. D. 1992; Salt-inducible betaine aldehyde dehydrogenase from sugar beet: cDNA cloning and expression. Plant Mol Biol 18:1–11
    [Google Scholar]
  26. Padan E., Bibi E., Ito M., Krulwich T. A. 2005; Alkaline pH homeostasis in bacteria: new insights. Biochim Biophys Acta 171767–88
    [Google Scholar]
  27. Pérez J. E., Nirchio M., Alfonsi C., Muñoz C. 2006; The biology of invasions: the genetic adaptation paradox. Biol Invasions 8:1115–1121
    [Google Scholar]
  28. Robert H., Le Marrec C., Blanco C., Jebbar M. 2000; Glycine betaine, carnitine, and choline enhance salinity tolerance and prevent the accumulation of sodium to a level inhibiting growth of Tetragenococcus halophila . Appl Environ Microbiol 66:509–517
    [Google Scholar]
  29. Röling W. F. M., van Verseveld H. W. 1996; Characterization of Tetragenococcus halophila populations in Indonesian soy mash (kecap) fermentation. Appl Environ Microbiol 62:1203–1207
    [Google Scholar]
  30. Röling W. F. M., van Verseveld H. W. 1997; Growth, maintenance and fermentation pattern of the salt-tolerant lactic acid bacterium Tetragenococcus halophila in anaerobic glucose limited retention cultures. Antonie Van Leeuwenhoek 72:239–243
    [Google Scholar]
  31. Röling W. F. M., Timotius K. H., Prasetyo A. B., Stouthamer A. H., van Verseveld H. W. 1994; Changes in microflora and biochemical composition during the baceman stage of traditional Indonesian kecap (soy sauce) production. J Ferment Bioeng 77:62–70
    [Google Scholar]
  32. Sargent D., Briggs B., Spencer S. 1997; Thick juice degradation during storage. Zuckerindustrie (Germany) 122:615–621
    [Google Scholar]
  33. Satomi M., Kimura B., Mizoi M., Sato T., Fujii T. 1997; Tetragenococcus muriaticus sp. nov., a new moderately halophilic lactic acid bacterium isolated from fermented squid liver sauce. Int J Syst Bacteriol 47:832–836
    [Google Scholar]
  34. Thongsant J., Tanasupawat S., Keeratipibul S., Jatikavanich S. 2002; Characterization and identification of Tetragenococcus halophilus and Tetragenococcus muriaticus strains from fish sauce (Nam-pla. Jap J Lactic Acid Bacteria 13:46–52
    [Google Scholar]
  35. Uchida K., Kanbe C. 1993; Occurrence of bacteriophages lytic for Pediococcus halophilus , a halophilic lactic-acid bacterium, in soy sauce fermentation. J Gen Appl Microbiol 39:429–437
    [Google Scholar]
  36. Versalovic J., Schneider M., De Bruijn F. J., Lupski J. R. 1994; Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. Methods Mol Cell Biol 5:25–40
    [Google Scholar]
  37. Villar M., Holgado A. P., Sanchez J. J., Trucco R. E., Oliver G. 1985; Isolation and characterization of Pediococcus halophilus from salted anchovies ( Engraulis anchoita . Appl Environ Microbiol 49:664–666
    [Google Scholar]
  38. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464
    [Google Scholar]
  39. Willems K. A., Willems M. L., Dardenne F., Klingeberg M., Michelberger T., Witte G. 2003; Microbiological observations during storage of thick juice on a pilot and industrial scale. In Proceedings of the CITS 2003 22nd General Assembly Madrid; Spain: 18–21 May 2003
    [Google Scholar]
  40. Wilson K. 1987; Preparation of genomic DNA from bacteria. In Current Protocols in Molecular Biology pp 2.4.1–2.4.5 Edited by Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. New York: Green Publishing and Wiley-Interscience;
    [Google Scholar]
  41. Wong H.-C., Chen S.-Y., Chen M.-Y., Oliver J. D., Hor L.-I., Tsai W.-C. 2004; Pulsed-field gel electrophoresis analysis of Vibrio vulnificus strains isolated from Taiwan and the United States. Appl Environ Microbiol 70:5153–5158
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2008/018168-0
Loading
/content/journal/micro/10.1099/mic.0.2008/018168-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error