1887

Abstract

Factors involved in symptom expression of viruses from the genus in the family such as grapevine fanleaf virus (GFLV) are poorly characterized. To identify symptom determinants encoded by GFLV, infectious cDNA clones of RNA1 and RNA2 of strain GHu were developed and used alongside existing infectious cDNA clones of strain F13 in a reverse genetics approach. transcripts of homologous combinations of RNA1 and RNA2 induced systemic infection in and with identical phenotypes to WT virus strains, i.e. vein clearing and chlorotic spots on and for GHu, respectively, and lack of symptoms on both hosts for F13. The use of assorted transcripts mapped symptom determinants on RNA1 of GFLV strain GHu, in particular within the distal 408 nt of the RNA-dependent RNA polymerase (1E), as shown by RNA1 transcripts for which coding regions or fragments derived thereof were swapped. Semi-quantitative analyses indicated no significant differences in virus titre between symptomatic and asymptomatic plants infected with various recombinants. Also, unlike the nepovirus tomato ringspot virus, no apparent proteolytic cleavage of GFLV protein 1E was detected upon virus infection or transient expression in . In addition, GFLV protein 1E failed to suppress silencing of EGFP in transgenic expressing EGFP or to enhance GFP expression in patch assays in WT . Together, our results suggest the existence of strain-specific functional domains, including a symptom determinant module, on the RNA-dependent RNA polymerase of GFLV.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.057646-0
2013-12-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/94/12/2803.html?itemId=/content/journal/jgv/10.1099/vir.0.057646-0&mimeType=html&fmt=ahah

References

  1. Andret-Link P., Laporte C., Valat L., Ritzenthaler C., Demangeat G., Vigne E., Laval V., Pfeiffer P., Fuchs M. 2004a; Grapevine fanleaf virus: still a major threat to the grapevine industry. J Plant Pathol 86:183–195
    [Google Scholar]
  2. Andret-Link P., Schmitt-Keichinger C., Demangeat G., Komar V., Fuchs M. 2004b; The specific transmission of Grapevine fanleaf virus by its nematode vector Xiphinema index is solely determined by the viral coat protein. Virology 320:12–22 [View Article][PubMed]
    [Google Scholar]
  3. Cañizares M. C., Taylor K. M., Lomonossoff G. P. 2004; Surface-exposed C-terminal amino acids of the small coat protein of Cowpea mosaic virus are required for suppression of silencing. J Gen Virol 85:3431–3435 [View Article][PubMed]
    [Google Scholar]
  4. Chiba M., Reed J. C., Prokhnevsky A. I., Chapman E. J., Mawassi M., Koonin E. V., Carrington J. C., Dolja V. V. 2006; Diverse suppressors of RNA silencing enhance agroinfection by a viral replicon. Virology 346:7–14 [View Article][PubMed]
    [Google Scholar]
  5. Chisholm J., Zhang G., Wang A., Sanfaçon H. 2007; Peripheral association of a polyprotein precursor form of the RNA-dependent RNA polymerase of Tomato ringspot virus with the membrane-bound viral replication complex. Virology 368:133–144 [View Article][PubMed]
    [Google Scholar]
  6. Choi M. S., Yoon I.-S., Rhee Y., Choi S. K., Lim S.-H., Won S. Y., Lee Y. H., Choi H. S., Lee S. C. other authors 2008; The effect of Cucumber mosaic virus 2b proteinto transient expression and transgene silencing mediated by agro-infiltration. Plant Pathol 24:296–304 [View Article]
    [Google Scholar]
  7. Culver J. N., Padmanabhan M. S. 2007; Virus-induced disease: altering host physiology one interaction at a time. Annu Rev Phytopathol 45:221–243 [View Article][PubMed]
    [Google Scholar]
  8. Curtis M. D., Grossniklaus U. 2003; A gateway cloning vector set for high-throughput functional analysis of genes in planta . Plant Physiol 133:462–469 [View Article][PubMed]
    [Google Scholar]
  9. Díaz-Pendón J. A., Ding S.-W. 2008; Direct and indirect roles of viral suppressors of RNA silencing in pathogenesis. Annu Rev Phytopathol 46:303–326 [View Article][PubMed]
    [Google Scholar]
  10. Du Z., Chen F., Zhao Z., Liao Q., Palukaitis P., Chen J. 2008; The 2b protein and the C-terminus of the 2a protein of cucumber mosaic virus subgroup I strains both play a role in viral RNA accumulation and induction of symptoms. Virology 380:363–370 [View Article][PubMed]
    [Google Scholar]
  11. Dunoyer P., Voinnet O. 2005; The complex interplay between plant viruses and host RNA-silencing pathways. Curr Opin Plant Biol 8:415–423 [View Article][PubMed]
    [Google Scholar]
  12. Fan Q., Niroula M., Feldstein P. A., Bruening G. 2011; Participation of the Cowpea mosaic virus protease in eliciting extreme resistance. Virology 417:71–78 [View Article][PubMed]
    [Google Scholar]
  13. Fernandez I., Candresse T., Le Gall O., Dunez J. 1999; The 5′ noncoding region of grapevine chrome mosaic nepovirus RNA-2 triggers a necrotic response on three Nicotiana spp. Mol Plant Microbe Interact 12:337–344 [View Article][PubMed]
    [Google Scholar]
  14. Gu H., Ghabrial S. A. 2005; The Bean pod mottle virus proteinase cofactor and putative helicase are symptom severity determinants. Virology 333:271–283 [View Article][PubMed]
    [Google Scholar]
  15. Harrison B. D., Murant A. F. 1977; Nematode transmissibility of pseudorecombinant isolates of tomato black ring virus. Ann Appl Biol 86:209–212 [View Article]
    [Google Scholar]
  16. Harrison B. D., Murant A. F., Mayo M. A., Roberts I. M. 1974; Distribution of determinants for symptom production, host range and nematode transmissibility between the two RNA components of raspberry ringspot virus. J Gen Virol 22:233–247 [View Article]
    [Google Scholar]
  17. Haviv S., Iddan Y., Goszczynski D., Mawassi M. 2012; The ORF5 of Grapevine virus A is involved in symptoms expression in Nicotiana benthamiana plants. Ann Appl Biol 160:181–190 [View Article]
    [Google Scholar]
  18. Heaton L. A., Lee T. C., Wei N., Morris T. J. 1991; Point mutations in the turnip crinkle virus capsid protein affect the symptoms expressed by Nicotiana benthamiana . Virology 183:143–150 [View Article][PubMed]
    [Google Scholar]
  19. Hirata H., Lu X., Yamaji Y., Kagiwada S., Ugaki M., Namba S. 2003; A single silent substitution in the genome of Apple stem grooving virus causes symptom attenuation. J Gen Virol 84:2579–2583 [View Article][PubMed]
    [Google Scholar]
  20. Ho S. N., Hunt H. D., Horton R. M., Pullen J. K., Pease L. R. 1989; Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77:51–59 [View Article][PubMed]
    [Google Scholar]
  21. Ihaka R., Gentleman R. 1996; r: A language for data analysis and graphics. J Comput Graph Statist 5:299–314
    [Google Scholar]
  22. Jay F., Wang Y., Yu A., Taconnat L., Pelletier S., Colot V., Renou J.-P., Voinnet O. 2011; Misregulation of AUXIN RESPONSE FACTOR 8 underlies the developmental abnormalities caused by three distinct viral silencing suppressors in Arabidopsis. PLoS Pathog 7:e1002035 [View Article][PubMed]
    [Google Scholar]
  23. Jovel J., Walker M., Sanfaçon H. 2007; Recovery of Nicotiana benthamiana plants from a necrotic response induced by a nepovirus is associated with RNA silencing but not with reduced virus titer. J Virol 81:12285–12297 [View Article][PubMed]
    [Google Scholar]
  24. Jovel J., Walker M., Sanfaçon H. 2011; Salicylic acid-dependent restriction of Tomato ringspot virus spread in tobacco is accompanied by a hypersensitive response, local RNA silencing, and moderate systemic resistance. Mol Plant Microbe Interact 24:706–718 [View Article][PubMed]
    [Google Scholar]
  25. Jupin I., Guilley H., Richards K. E., Jonard G. 1992; Two proteins encoded by beet necrotic yellow vein virus RNA 3 influence symptom phenotype on leaves. EMBO J 11:479–488[PubMed]
    [Google Scholar]
  26. Kagiwada S., Yamaji Y., Komatsu K., Takahashi S., Mori T., Hirata H., Suzuki M., Ugaki M., Namba S. 2005; A single amino acid residue of RNA-dependent RNA polymerase in the Potato virus X genome determines the symptoms in Nicotiana plants. Virus Res 110:177–182 [View Article][PubMed]
    [Google Scholar]
  27. Kim C.-H., Palukaitis P. 1997; The plant defense response to cucumber mosaic virus in cowpea is elicited by the viral polymerase gene and affects virus accumulation in single cells. EMBO J 16:4060–4068 [View Article][PubMed]
    [Google Scholar]
  28. Lamprecht R. L., Maree H. J., Stephan D., Burger J. T. 2012; Complete nucleotide sequence of a South African isolate of Grapevine fanleaf virus . Virus Genes 45:406–410 [View Article][PubMed]
    [Google Scholar]
  29. Letunic I., Doerks T., Bork P. 2012; smart 7: recent updates to the protein domain annotation resource. Nucleic Acids Res 40:Database issueD302–D305 [View Article][PubMed]
    [Google Scholar]
  30. Lewsey M., Robertson F. C., Canto T., Palukaitis P., Carr J. P. 2007; Selective targeting of miRNA-regulated plant development by a viral counter-silencing protein. Plant J 50:240–252 [View Article][PubMed]
    [Google Scholar]
  31. Lewsey M., Surette M., Robertson F. C., Ziebell H., Choi S. H., Ryu K. H., Canto T., Palukaitis P., Payne T. other authors 2009; The role of the Cucumber mosaic virus 2b protein in viral movement and symptom induction. Mol Plant Microbe Interact 22:642–654 [View Article][PubMed]
    [Google Scholar]
  32. Li F., Ding S.-W. 2006; Virus counterdefense: diverse strategies for evading the RNA-silencing immunity. Annu Rev Microbiol 60:503–531 [View Article][PubMed]
    [Google Scholar]
  33. Ling K. S., Zhu H. Y., Alvizo H., Hu J. S., Drong R. F., Slightom J. L., Gonsalves D. 1997; The coat protein gene of grapevine leafroll associated closterovirus-3: cloning, nucleotide sequencing and expression in transgenic plants. Arch Virol 142:1101–1116 [View Article][PubMed]
    [Google Scholar]
  34. Mansilla C., Sánchez F., Padgett H. S., Pogue G. P., Ponz F. 2009; Chimeras between Oilseed rape mosaic virus and Tobacco mosaic virus highlight the relevant role of the tobamoviral RdRp as pathogenicity determinant in several hosts. Mol Plant Pathol 10:59–68 [View Article][PubMed]
    [Google Scholar]
  35. Martin D. P., Williamson C., Posada D. 2005; rdp2: recombination detection and analysis from sequence alignments. Bioinformatics 21:260–262 [View Article][PubMed]
    [Google Scholar]
  36. Mekuria T. A., Gutha L. R., Martin R. R., Naidu R. A. 2009; Genome diversity and intra- and interspecies recombination events in Grapevine fanleaf virus . Phytopathology 99:1394–1402 [View Article][PubMed]
    [Google Scholar]
  37. Oliver J. E., Vigne E., Fuchs M. 2010; Genetic structure and molecular variability of Grapevine fanleaf virus populations. Virus Res 152:30–40 [View Article][PubMed]
    [Google Scholar]
  38. Ozeki J., Takahashi S., Komatsu K., Kagiwada S., Yamashita K., Mori T., Hirata H., Yamaji Y., Ugaki M., Namba S. 2006; A single amino acid in the RNA-dependent RNA polymerase of Plantago asiatica mosaic virus contributes to systemic necrosis. Arch Virol 151:2067–2075 [View Article][PubMed]
    [Google Scholar]
  39. Padmanabhan M. S., Goregaoker S. P., Golem S., Shiferaw H., Culver J. N. 2005; Interaction of the tobacco mosaic virus replicase protein with the Aux/IAA protein PAP1/IAA26 is associated with disease development. J Virol 79:2549–2558 [View Article][PubMed]
    [Google Scholar]
  40. Pang S.-Z., Jan F.-J., Tricoli D. M., Russell P. F., Carney K. J., Hu J. S., Fuchs M., Quemada H. D., Gonsalves D. 2000; Resistance to squash mosaic comovirus in transgenic squash plants expressing its coat protein genes. Mol Breed 6:87–93 [View Article]
    [Google Scholar]
  41. Pfeffer S., Dunoyer P., Heim F., Richards K. E., Jonard G., Ziegler-Graff V. 2002; P0 of beet western yellows virus is a suppressor of posttranscriptional gene silencing. J Virol 76:6815–6824 [View Article][PubMed]
    [Google Scholar]
  42. Rahim M. D., Andika I. B., Han C., Kondo H., Tamada T. 2007; RNA4-encoded p31 of beet necrotic yellow vein virus is involved in efficient vector transmission, symptom severity and silencing suppression in roots. J Gen Virol 88:1611–1619 [View Article][PubMed]
    [Google Scholar]
  43. Rao A. L., Grantham G. L. 1995; A spontaneous mutation in the movement protein gene of brome mosaic virus modulates symptom phenotype in Nicotiana benthamiana . J Virol 69:2689–2691[PubMed]
    [Google Scholar]
  44. Ratcliff F., Harrison B. D., Baulcombe D. C. 1997; A similarity between viral defense and gene silencing in plants. Science 276:1558–1560 [View Article][PubMed]
    [Google Scholar]
  45. Ratcliff F., Martin-Hernandez A. M., Baulcombe D. C. 2001; Technical Advance. Tobacco rattle virus as a vector for analysis of gene function by silencing. Plant J 25:237–245 [View Article][PubMed]
    [Google Scholar]
  46. Ritzenthaler C., Viry M., Pinck M., Margis R., Fuchs M., Pinck L. 1991; Complete nucleotide sequence and genetic organization of grapevine fanleaf nepovirus RNA1. J Gen Virol 72:2357–2365 [View Article][PubMed]
    [Google Scholar]
  47. Rodríguez-Cerezo E., Klein P. G., Shaw J. G. 1991; A determinant of disease symptom severity is located in the 3′-terminal noncoding region of the RNA of a plant virus. Proc Natl Acad Sci U S A 88:9863–9867 [View Article][PubMed]
    [Google Scholar]
  48. Sanfaçon H., Wellink J., Le Gall O., Karasev A., van der Vlugt R., Wetzel T. 2009; Secoviridae: a proposed family of plant viruses within the order Picornavirales that combines the families Sequiviridae and Comoviridae, the unassigned genera Cheravirus and Sadwavirus, and the proposed genus Torradovirus . Arch Virol 154:899–907 [View Article][PubMed]
    [Google Scholar]
  49. Schellenberger P., Andret-Link P., Schmitt-Keichinger C., Bergdoll M., Marmonier A., Vigne E., Lemaire O., Fuchs M., Demangeat G., Ritzenthaler C. 2010; A stretch of 11 amino acids in the βB-βC loop of the coat protein of Grapevine fanleaf virus is essential for transmission by the nematode Xiphinema index. J Virol 84:7924–7933 [View Article][PubMed]
    [Google Scholar]
  50. Scholthof H. B., Scholthof K. B., Jackson A. O. 1995; Identification of tomato bushy stunt virus host-specific symptom determinants by expression of individual genes from a potato virus X vector. Plant Cell 7:1157–1172[PubMed] [CrossRef]
    [Google Scholar]
  51. Serghini M. A., Fuchs M., Pinck M., Reinbolt J., Walter B., Pinck L. 1990; RNA2 of grapevine fanleaf virus: sequence analysis and coat protein cistron location. J Gen Virol 71:1433–1441 [View Article][PubMed]
    [Google Scholar]
  52. Shiboleth Y. M., Haronsky E., Leibman D., Arazi T., Wassenegger M., Whitham S. A., Gaba V., Gal-On A. 2007; The conserved FRNK box in HC-Pro, a plant viral suppressor of gene silencing, is required for small RNA binding and mediates symptom development. J Virol 81:13135–13148 [View Article][PubMed]
    [Google Scholar]
  53. Shigetou N., Kaishu L., Gonsalves C., Gonsalves D., Slightom J. L. 1991; Expression of the gene encoding the coat protein of cucumber mosaic virus (CMV) strain WL appears to provide protection to tobacco plants against infection by several different CMV strains. Gene 107:181–188 [View Article][PubMed]
    [Google Scholar]
  54. Vigne E., Bergdoll M., Guyader S., Fuchs M. 2004; Population structure and genetic variability within isolates of Grapevine fanleaf virus from a naturally infected vineyard in France: evidence for mixed infection and recombination. J Gen Virol 85:2435–2445 [View Article][PubMed]
    [Google Scholar]
  55. Vigne E., Marmonier A., Fuchs M. 2008; Multiple interspecies recombination events within RNA2 of Grapevine fanleaf virus and Arabis mosaic virus . Arch Virol 153:1771–1776 [View Article][PubMed]
    [Google Scholar]
  56. Viry M., Serghini M. A., Hans F., Ritzenthaler C., Pinck M., Pinck L. 1993; Biologically active transcripts from cloned cDNA of genomic grapevine fanleaf nepovirus RNAs. J Gen Virol 74:169–174 [View Article][PubMed]
    [Google Scholar]
  57. Voinnet O. 2005; Induction and suppression of RNA silencing: insights from viral infections. Nat Rev Genet 6:206–220 [View Article][PubMed]
    [Google Scholar]
  58. Wang J., Simon A. E. 2000; 3′-End stem–loops of the subviral RNAs associated with turnip crinkle virus are involved in symptom modulation and coat protein binding. J Virol 74:6528–6537 [View Article][PubMed]
    [Google Scholar]
  59. Wang M.-B., Masuta C., Smith N. A., Shimura H. 2012; RNA silencing and plant viral diseases. Mol Plant Microbe Interact 25:1275–1285 [View Article][PubMed]
    [Google Scholar]
  60. Whitham S. A., Wang Y. 2004; Roles for host factors in plant viral pathogenicity. Curr Opin Plant Biol 7:365–371 [View Article][PubMed]
    [Google Scholar]
  61. Wingard S. A. 1928; Hosts and symptoms of ring spot, a virus disease of plants. J Agric Res 37:127–153
    [Google Scholar]
  62. Zhu S., Gao F., Cao X., Chen M., Ye G., Wei C., Li Y. 2005; The rice dwarf virus P2 protein interacts with ent-kaurene oxidases in vivo, leading to reduced biosynthesis of gibberellins and rice dwarf symptoms. Plant Physiol 139:1935–1945 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.057646-0
Loading
/content/journal/jgv/10.1099/vir.0.057646-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error