1887

Abstract

Birnaviruses possess a capsid with a single protein layer in contrast to most double-stranded RNA viruses infecting multicellular eukaryotes. Using freeze-drying and heavy metal shadowing, the capsids of two birnaviruses, infectious bursal disease virus (IBDV) and infectious pancreatic necrosis virus, as well as of an IBDV virus-like particle (VLP) are shown to follow the same T=13 laevo icosahedral geometry. The structure of the VLP was determined at a resolution of approximately 15 Å (1·5 nm) by a combination of electron cryomicroscopy and a recently developed three-dimensional reconstruction method, where the scattering density is expressed in terms of symmetry-adapted functions. This reconstruction methodology is well adapted to the icosahedral symmetry of viruses and only requires a small number of images to analyse. The atomic model of the external capsid protein, VP2, recently determined by X-ray crystallography, fits well into the VLP reconstruction and occupies all the electron densities present in the map. Thus, similarly to the IBDV virion, only VP2 forms the icosahedral layer of the VLP. The other components of both VLP and IBDV particles that play a crucial role in the capsid assembly, VP1, VP3 and the peptides arising from the processing of pVP2, do not follow the icosahedral symmetry, allowing them to be involved in other processes such as RNA packaging.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.80942-0
2005-08-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/86/8/vir862339.html?itemId=/content/journal/jgv/10.1099/vir.0.80942-0&mimeType=html&fmt=ahah

References

  1. Bayer M. E., Remsen C. C. 1970; Bacteriophage T2 as seen with freeze-etching technique. Virology 40:703–718 [CrossRef]
    [Google Scholar]
  2. Birghan C., Mundt E., Gorbalenya A. E. 2000; A non-canonical Lon proteinase lacking the ATPase domain employs the ser-lys catalytic dyad to exercise broad control over the life cycle of a double-stranded RNA virus. EMBO J 19:114–123 [CrossRef]
    [Google Scholar]
  3. Bottcher B., Kiselev N. A., Stel'Mashchuk V. Y., Perevozchikova N. A., Borisov A. V., Crowther R. A. 1997; Three-dimensional structure of infectious bursal disease virus determined by electron cryomicroscopy. J Virol 71:325–330
    [Google Scholar]
  4. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254 [CrossRef]
    [Google Scholar]
  5. Butcher S. J., Dokland T., Ojala P. M., Bamford D. H., Fuller S. D. 1997; Intermediates in the assembly pathway of the double-stranded RNA virus phi6. EMBO J 16:4477–4487 [CrossRef]
    [Google Scholar]
  6. Caston J. R., Trus B. L., Booy F. P., Wickner R. B., Wall J. S., Steven A. C. 1997; Structure of L-A virus: a specialized compartment for the transcription and replication of double-stranded RNA. J Cell Biol 138:975–985 [CrossRef]
    [Google Scholar]
  7. Caston J. R., Martinez-Torrecuadrada J. L., Maraver A., Lombardo E., Rodriguez J. F., Casal J. I., Carrascosa J. L. 2001; C terminus of infectious bursal disease virus major capsid protein VP2 is involved in definition of the T number for capsid assembly. J Virol 75:10815–10828 [CrossRef]
    [Google Scholar]
  8. Chevalier C., Lepault J., Erk I., Da Costa B., Delmas B. 2002; The maturation process of pVP2 requires assembly of infectious bursal disease virus capsids. J Virol 76:2384–2392 [CrossRef]
    [Google Scholar]
  9. Chevalier C., Lepault J., Da Costa B., Delmas B. 2004; The last C-terminal residue of VP3, glutamic acid 257, controls capsid assembly of infectious bursal disease virus. J Virol 78:3296–3303 [CrossRef]
    [Google Scholar]
  10. Conway J. F., Steven A. C. 1999; Methods for reconstructing density maps of “single” particles from cryoelectron micrographs to subnanometer resolution. J Struct Biol 128:106–118 [CrossRef]
    [Google Scholar]
  11. Coulibaly F., Chevalier C., Gutsche I., Pous J., Navaza J., Bressanelli S., Delmas B., Rey F. A. 2005; The birnavirus crystal structure reveals structural relationship among icosahedral viruses. Cell 120:761–772 [CrossRef]
    [Google Scholar]
  12. Da Costa B., Chevalier C., Henry C., Huet J. C., Petit S., Lepault J., Boot H., Delmas B. 2002; The capsid of infectious bursal disease virus contains several small peptides arising from the maturation process of pVP2. J Virol 76:2393–2402 [CrossRef]
    [Google Scholar]
  13. Dobos P., Hill B. J., Hallett R., Kells D. T., Becht H., Teninges D. 1979; Biophysical and biochemical characterization of five animal viruses with bisegmented double-stranded RNA genomes. J Virol 32:593–605
    [Google Scholar]
  14. Dubochet J., Adrian M., Chang J. J., Homo J. C., Lepault J., McDowall A. W., Schultz P. 1988; Cryo-electron microscopy of vitrified specimens. Q Rev Biophys 21:129–228 [CrossRef]
    [Google Scholar]
  15. Erickson H. A., Klug A. 1971; Measurement and compensation of defocussing and aberrations by Fourier processing of electron micrographs. Philos Trans R Soc Lond B Biol Sci 261:105–118 [CrossRef]
    [Google Scholar]
  16. Escaig J., Nicolas G. 1976; Cryofractures of biological material performed at very low temperatures in ultravacuum. C R Acad Sci Hebd Seances Acad Sci D 283:1245–1248
    [Google Scholar]
  17. Fernandez-Arias A., Risco C., Martinez S., Albar J. P., Rodriguez J. F. 1998; Expression of ORF A1 of infectious bursal disease virus results in the formation of virus-like particles. J Gen Virol 79:1047–1054
    [Google Scholar]
  18. Galloux M., Chevalier C., Henry C., Huet J. C., Costa B. D., Delmas B. 2004; Peptides resulting from the pVP2 C-terminal processing are present in infectious pancreatic necrosis virus particles. J Gen Virol 85:2231–2236 [CrossRef]
    [Google Scholar]
  19. Grimes J. M., Burroughs J. N., Gouet P., Diprose J. M., Malby R., Zientara S., Mertens P. P., Stuart D. I. 1998; The atomic structure of the bluetongue virus core. Nature 395:470–478 [CrossRef]
    [Google Scholar]
  20. Hill C. L., Booth T. F., Prasad B. V., Grimes J. M., Mertens P. P., Sutton G. C., Stuart D. I. 1999; The structure of a cypovirus and the functional organization of dsRNA viruses. Nat Struct Biol 6:565–568 [CrossRef]
    [Google Scholar]
  21. Lepault J., Weiss H., Homo J. C., Leonard K. 1981; Comparative electron microscopic studies of partially negatively stained, freeze-dried and freeze-fractured cytochrome reductase membrane crystals. J Mol Biol 149:275–284 [CrossRef]
    [Google Scholar]
  22. Lombardo E., Maraver A., Castón J. R., Rivera J., Fernandez-Arias A., Serrano A., Carrascosa J. L., Rodriguez J. F. 1999; VP1, the putative RNA-dependent RNA polymerase of infectious bursal disease virus, forms complexes with the capsid protein VP3, leading to efficient encapsidation into virus-like particles. J Virol 73:6973–6983
    [Google Scholar]
  23. Lu G., Zhou Z. H., Baker M. L., Jakana J., Cai D., Wei X., Chen S., Gu X., Chiu W. 1998; Structure of double-shelled rice dwarf virus. J Virol 72:8541–8549
    [Google Scholar]
  24. Ludert J. E., Gil F., Liprandi F., Esparza J. 1986; The structure of the rotavirus inner capsid studied by electron microscopy of chemically disrupted particles. J Gen Virol 67:1721–1725 [CrossRef]
    [Google Scholar]
  25. Maraver A., Clemente R., Rodriguez J. F., Lombardo E. 2003; Identification and molecular characterization of the RNA polymerase-binding motif of infectious bursal disease virus inner capsid protein VP3. J Virol 77:2459–2468 [CrossRef]
    [Google Scholar]
  26. Metcalf P., Cyrklaff M., Adrian M. 1991; The three-dimensional structure of reovirus obtained by cryo-electron microscopy. EMBO J 10:3129–3136
    [Google Scholar]
  27. Muller H., Becht H. 1982; Biosynthesis of virus-specific proteins in cells infected with infectious bursal disease virus and their significance as structural elements for infectious virus and incomplete particles. J Virol 44:384–392
    [Google Scholar]
  28. Muller H., Islam M. R., Raue R. 2003; Research on infectious bursal disease – the past, the present and the future. Vet Microbiol 97:153–165 [CrossRef]
    [Google Scholar]
  29. Nakagawa A., Miyazaki N., Taka J. 9 other authors 2003; The atomic structure of rice dwarf virus reveals the self-assembly mechanism of component proteins. Structure 11:1227–1238 [CrossRef]
    [Google Scholar]
  30. Navaza J. 2003; On the three-dimensional reconstruction of icosahedral particles. J Struct Biol 144:13–23 [CrossRef]
    [Google Scholar]
  31. Navaza J., Lepault J., Rey F. A., Alvarez-Rua C., Borge J. 2002; On the fitting of model electron densities into EM reconstructions: a reciprocal-space formulation. Acta Crystallogr D Biol Crystallogr 58:1820–1825 [CrossRef]
    [Google Scholar]
  32. Ona A., Luque D., Abaitua F., Maraver A., Caston J. R., Rodriguez J. F. 2004; The C-terminal domain of the pVP2 precursor is essential for the interaction between VP2 and VP3, the capsid polypeptides of infectious bursal disease virus. Virology 322:135–142 [CrossRef]
    [Google Scholar]
  33. Ozel M., Gelderblom H. 1985; Capsid symmetry of viruses of the proposed birnavirus group. Arch Virol 84:149–161 [CrossRef]
    [Google Scholar]
  34. Prasad B. V., Yamaguchi S., Roy P. 1992; Three-dimensional structure of single-shelled bluetongue virus. J Virol 66:2135–2142
    [Google Scholar]
  35. Prasad B. V., Rothnagel R., Zeng C. Q., Jakana J., Lawton J. A., Chiu W., Estes M. K. 1996; Visualization of ordered genomic RNA and localization of transcriptional complexes in rotavirus. Nature 382:471–473 [CrossRef]
    [Google Scholar]
  36. Reinisch K. M., Nibert M. L., Harrison S. C. 2000; Structure of the reovirus core at 3·6 A resolution. Nature 404:960–967 [CrossRef]
    [Google Scholar]
  37. Rodriguez Saint-Jean S., Borrego J. J., Perez-Prieto S. I. 2003; Infectious pancreatic necrosis virus: biology, pathogenesis, and diagnostic methods. Adv Virus Res 62:113–165
    [Google Scholar]
  38. Roseto A., Escaig J., Delain E., Cohen J., Scherrer R. 1979; Structure of rotaviruses as studied by the freeze-drying technique. Virology 98:471–475 [CrossRef]
    [Google Scholar]
  39. Tacken M. G., Rottier P. J., Gielkens A. L., Peeters B. P. 2000; Interactions in vivo between the proteins of infectious bursal disease virus: capsid protein VP3 interacts with the RNA-dependent RNA polymerase, VP1. J Gen Virol 81:209–218
    [Google Scholar]
  40. Tacken M. G., Peeters B. P., Thomas A. A., Rottier P. J., Boot H. J. 2002; Infectious bursal disease virus capsid protein VP3 interacts both with VP1, the RNA-dependent RNA polymerase, and with viral double-stranded RNA. J Virol 76:11301–11311 [CrossRef]
    [Google Scholar]
  41. Tacken M. G., Van Den Beuken P. A., Peeters B. P., Thomas A. A., Rottier P. J., Boot H. J. 2003; Homotypic interactions of the infectious bursal disease virus proteins VP3, pVP2, VP4, and VP5: mapping of the interacting domains. Virology 312:306–319 [CrossRef]
    [Google Scholar]
  42. von Einem U. I., Gorbalenya A. E., Schirrmeier H., Behrens S. E., Letzel T., Mundt E. 2004; VP1 of infectious bursal disease virus is an RNA-dependent RNA polymerase. J Gen Virol 85:2221–2229 [CrossRef]
    [Google Scholar]
  43. Wang B. C. 1985; Resolution of phase ambiguity in macromolecular crystallography. Methods Enzymol 115:90–112
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.80942-0
Loading
/content/journal/jgv/10.1099/vir.0.80942-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error