1887

Abstract

RNA-dependent RNA polymerases, the key enzymes in replication of RNA viruses, have a low fidelity; thus, these viruses replicate as a swarm of mutants termed viral quasispecies. Constant generation of new mutations allows RNA viruses to adapt swiftly to a novel environment through selection of both pre-existing and -generated genetic variants. Here, quasispecies dynamics were studied in controlled hantavirus transmission from experimentally infected to naïve rodents through infested cage bedding. An elementary step of virus microevolution was apparent, as one synonymous mutation (A759G) repeatedly became fixed in the viral RNA quasispecies populations in the recipient animals.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.83662-0
2008-05-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/jgv/89/5/1309.html?itemId=/content/journal/jgv/10.1099/vir.0.83662-0&mimeType=html&fmt=ahah

References

  1. Domingo E., Holland J. J. 1997; RNA virus mutations and fitness for survival. Annu Rev Microbiol 51:151–178 [CrossRef]
    [Google Scholar]
  2. Domingo E., Biebricher C. K., Eigen M., Holland J. J. 2001 Quasispecies and RNA Virus Evolution: Principles and Consequences Georgetown, TX: Landes Bioscience;
    [Google Scholar]
  3. Feuer R., Boone J. D., Netski D., Morzunov S. P., St Jeor S. C. 1999; Temporal and spatial analysis of Sin Nombre virus quasispecies in naturally infected rodents. J Virol 73:9544–9554
    [Google Scholar]
  4. Gavrilovskaya I. N., Chumakov M. P., Apekina N. S., Ryltseva E. V., Martiyanova L. I., Gorbachkova E. A., Bernshtein A. D., Zakharova M. A., Boiko V. A. 1983; Adaptation to laboratory and wild animals of the haemorrhagic fever with renal syndrome virus present in the foci of European U.S.S.R. Brief report. Arch Virol 77:87–90 [CrossRef]
    [Google Scholar]
  5. Groen J., Gerding M., Koeman J. P., Roholl P. J., van Amerongen G., Jordans H. G., Niesters H. G., Osterhaus A. D. 1995; A macaque model for hantavirus infection. J Infect Dis 172:38–44 [CrossRef]
    [Google Scholar]
  6. Hamano T., Matsuo K., Hibi Y., Victoriano A. F., Takahashi N., Mabuchi Y., Soji T., Irie S., Sawanpanyalert P. other authors 2007; A single-nucleotide synonymous mutation in the gag gene controlling human immunodeficiency virus type 1 virion production. J Virol 81:1528–1533 [CrossRef]
    [Google Scholar]
  7. Kallio E. R., Klingström J., Gustafsson E., Manni T., Vaheri A., Henttonen H., Vapalahti O., Lundkvist Å. 2006; Prolonged survival of Puumala hantavirus outside the host: evidence for indirect transmission via the environment. J Gen Virol 87:2127–2134 [CrossRef]
    [Google Scholar]
  8. Kaukinen P., Vaheri A., Plyusnin A. 2005; Hantavirus nucleocapsid protein: a multifunctional molecule with both housekeeping and ambassadorial duties. Arch Virol 150:1693–1713 [CrossRef]
    [Google Scholar]
  9. Klingström J., Plyusnin A., Vaheri A., Lundkvist Å. 2002; Wild-type Puumala hantavirus infection induces cytokines, C-reactive protein, creatinine, and nitric oxide in cynomolgus macaques. J Virol 76:444–449 [CrossRef]
    [Google Scholar]
  10. Lundkvist Å., Cheng Y., Sjölander K. B., Niklasson B., Vaheri A., Plyusnin A. 1997; Cell culture adaptation of Puumala hantavirus changes the infectivity for its natural reservoir, Clethrionomys glareolus , and leads to accumulation of mutants with altered genomic RNA S segment. J Virol 71:9515–9523
    [Google Scholar]
  11. Manrubia S. C., Escarmis C., Domingo E., Lazaro E. 2005; High mutation rates, bottlenecks, and robustness of RNA viral quasispecies. Gene 347:273–282 [CrossRef]
    [Google Scholar]
  12. Meyer B. J., Schmaljohn C. S. 2000; Persistent hantavirus infections: characteristics and mechanisms. Trends Microbiol 8:61–67 [CrossRef]
    [Google Scholar]
  13. Nakamura Y., Gojobori T., Ikemura T. 2000; Codon usage tabulated from international DNA sequence databases: status for the year 2000. Nucleic Acids Res 28:292 [CrossRef]
    [Google Scholar]
  14. Nemirov K., Lundkvist Å., Vaheri A., Plyusnin A. 2003; Adaptation of Puumala hantavirus to cell culture is associated with point mutations in the coding region of the L segment and in the noncoding regions of the S segment. J Virol 77:8793–8800 [CrossRef]
    [Google Scholar]
  15. Nichol S. T., Beaty B. J., Elliott R. M., Goldbach R., Plyusnin A., Schmaljohn C. S., Tesh R. B. 2005; Family Bunyaviridae . In Virus Taxonomy: Eighth Report of the International Committee on Taxonomy of Viruses pp 695–716Edited by Fauquet C. M., Mayo M. A., Maniloff J., Desselberger U., Ball. San Diego, CA: Elsevier Academic Press;
    [Google Scholar]
  16. Novella I. S., Zarate S., Metzgar D., Ebendick-Corpus B. E. 2004; Positive selection of synonymous mutations in vesicular stomatitis virus. J Mol Biol 342:1415–1421 [CrossRef]
    [Google Scholar]
  17. Plyusnin A., Morzunov S. P. 2001; Virus evolution and genetic diversity of hantaviruses and their rodent hosts. Curr Top Microbiol Immunol 256:47–75
    [Google Scholar]
  18. Plyusnin A., Vapalahti O., Ulfves K., Lehväslaiho H., Apekina N., Gavrilovskaya I., Blinov V., Vaheri A. 1994; Sequences of wild Puumala virus genes show a correlation of genetic variation with geographic origin of the strains. J Gen Virol 75:405–409 [CrossRef]
    [Google Scholar]
  19. Plyusnin A., Vapalahti O., Lehväslaiho H., Apekina N., Mikhailova T., Gavrilovskaya I., Laakkonen J., Niemimaa J., Henttonen H., Brummer-Korvenkontio M. 1995; Genetic variation of wild Puumala viruses within the serotype, local rodent populations and individual animal. Virus Res 38:25–41 [CrossRef]
    [Google Scholar]
  20. Plyusnin A., Cheng Y., Lehväslaiho H., Vaheri A. 1996a; Quasispecies in wild-type Tula hantavirus populations. J Virol 70:9060–9063
    [Google Scholar]
  21. Plyusnin A., Vapalahti O., Vaheri A. 1996b; Hantaviruses: genome structure, expression and evolution. J Gen Virol 77:2677–2687 [CrossRef]
    [Google Scholar]
  22. Plyusnin A., Hörling J., Kanerva M., Mustonen J., Cheng Y., Partanen J., Vapalahti O., Kukkonen S. K., Niemimaa J. other authors 1997; Puumala hantavirus genome in patients with nephropathia epidemica: correlation of PCR positivity with HLA haplotype and link to viral sequences in local rodents. J Clin Microbiol 35:1090–1096
    [Google Scholar]
  23. Sironen T., Vaheri A., Plyusnin A. 2001; Molecular evolution of Puumala hantavirus. J Virol 75:11803–11810 [CrossRef]
    [Google Scholar]
  24. Vapalahti O., Mustonen J., Lundkvist Å., Henttonen H., Plyusnin A., Vaheri A. 2003; Hantavirus infections in Europe. Lancet Infect Dis 3:653–661 [CrossRef]
    [Google Scholar]
  25. Vignuzzi M., Stone J. K., Arnold J. J., Cameron C. E., Andino R. 2006; Quasispecies diversity determines pathogenesis through cooperative interactions in a viral population. Nature 439:344–348 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.83662-0
Loading
/content/journal/jgv/10.1099/vir.0.83662-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error