Interactions between wild-type and mutant prion proteins modulate neurodegeneration in transgenic mice.

  1. G C Telling,
  2. T Haga,
  3. M Torchia,
  4. P Tremblay,
  5. S J DeArmond, and
  6. S B Prusiner
  1. Department of Neurology, University of California at San Francisco, 94143 USA.

Abstract

Transgenic mice overexpressing approximately eightfold the mouse (Mo) prion protein (PrP) gene carrying the P102L mutation of GSS developed neurodegeneration between 150 and 300 days of age, while controls expressing the wild-type MoPrP-A transgene at the same level remained healthy. Mice overexpressing the wild-type MoPrP-A transgene were highly susceptible to inoculated mouse prions, exhibiting abbreviated scrapie incubation times of 45 days. After crossing the mutant transgene onto a null (Prnp 0/0) background, the resulting Tg(MoPrP-P101L)Prnp 0/0 mice displayed a highly synchronous onset of illness at 145 days of age, which was shortened to 85 days upon breeding to homozygosity for the transgene array. Besides occasional PrP plaques and modest spongiform degeneration, Tg(MoPrP-P101L) mice suffered from a myopathy and a peripheral neuropathy. Disruption of the wild-type MoPrP gene increased the number of PrP plaques and the severity of spongiform degeneration. Brain extracts prepared from spontaneously ill transgenic mice transmitted disease to Tg196/Prnp 0/0 mice, expressing low levels of the mutant transgene. Our results demonstrate that the presence of wild-type PrP genes, the level of PrP transgene expression, and the sequence of the transgene can profoundly modify experimental prion disease.

Footnotes

| Table of Contents

Life Science Alliance