Aberrant PRDM9 expression impacts the pan-cancer genomic landscape

  1. Philip Awadalla1,2
  1. 1Ontario Institute for Cancer Research, Department of Computational Biology, Toronto, Ontario M5G 0A3, Canada;
  2. 2University of Toronto, Department of Molecular Genetics, Toronto, Ontario M5S 1A8, Canada
  • Corresponding author: Philip.Awadalla{at}oicr.on.ca
  • Abstract

    The binding of PRDM9 to chromatin is a key step in the induction of DNA double-strand breaks associated with meiotic recombination hotspots; it is normally expressed solely in germ cells. We interrogated 1879 cancer samples in 39 different cancer types and found that PRDM9 is unexpectedly expressed in 20% of these tumors even after stringent gene homology correction. The expression levels of PRDM9 in tumors are significantly higher than those found in healthy neighboring tissues and in healthy nongerm tissue databases. Recurrently mutated regions located within 5 Mb of the PRDM9 loci, as well as differentially expressed genes in meiotic pathways, correlate with PRDM9 expression. In samples with aberrant PRDM9 expression, structural variant breakpoints frequently neighbor the DNA motif recognized by PRDM9, and there is an enrichment of structural variants at sites of known meiotic PRDM9 activity. This study is the first to provide evidence of an association between aberrant expression of the meiosis-specific gene PRDM9 with genomic instability in cancer.

    Footnotes

    • Received October 27, 2017.
    • Accepted October 4, 2018.

    This article is distributed exclusively by Cold Spring Harbor Laboratory Press for the first six months after the full-issue publication date (see http://genome.cshlp.org/site/misc/terms.xhtml). After six months, it is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), as described at http://creativecommons.org/licenses/by-nc/4.0/.

    | Table of Contents

    Preprint Server