Theory of cooperative fluorescence from products of reactions or collisions: Identical neutral atomic fragments

Gershon Kurizki and Abraham Ben-Reuven
Phys. Rev. A 36, 90 – Published 1 July 1987
PDFExport Citation

Abstract

The time-resolved cooperative emission from a system of correlated neutral dissociation fragments, or molecular collision products in beams, is investigated. The investigation is focused on emission at large fragment separations (between 1 nm and a few emission wavelengths), exceeding the domain of short-range interactions within the reactive or collisional molecular complex. A master-equation approach is used to obtain a general expression for the cooperative emission rate, which consists of nonexponential decay factors multiplied by temporal ringing patterns. These features result from the time-dependent radiative coupling between the receding fragments; they depend in an essential manner on the initial electronic state of the parent molecular complex and its symmetry which determine the correlations between the fragments. In the model system of a pair of identical two-level fragments two cases are considered separately. (a) A single photon shared by the fragments, where the emission is initially superradiant or subradiant (radiation trapping), depending on the spin and inversion symmetry of the parent molecular system and of the nascent fragments. The ringing pattern depends on the electronic angular momentum state of the parent molecule and on the polarization of the emitted light. (Such a ringing has been observed recently by Grangier, Aspect, and Vigué [Phys. Rev. Lett. 54, 418 (1985)] in the emission of photodissociated Ca2.) (b) Two initially excited fragments, where the ringing pattern is of smaller amplitude, and is weakly dependent on the electronic angular momentum of the parent molecule. All the aforementioned cooperative features generally last until the fragments recede several radiation wavelengths away from each other. The application of this time-resolved analysis to various diagnostic problems is discussed, especially with regard to the identification of excited electronic states of the parent molecular complex, and the stereospecificity of the fragmental orbitals.

  • Received 27 January 1987

DOI:https://doi.org/10.1103/PhysRevA.36.90

©1987 American Physical Society

Authors & Affiliations

Gershon Kurizki

  • Department of Chemical Physics, The Weizmann Institute of Science, 76100 Rehovot, Israel

Abraham Ben-Reuven

  • School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 69978 Tel Aviv, Israel

References (Subscription Required)

Click to Expand
Issue

Vol. 36, Iss. 1 — July 1987

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review A

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×