Entropy exchange and entanglement in the Jaynes-Cummings model

E. Boukobza and D. J. Tannor
Phys. Rev. A 71, 063821 – Published 29 June 2005

Abstract

The Jaynes-Cummings model (JCM) is the simplest fully quantum model that describes the interaction between light and matter. We extend a previous analysis by Phoenix and Knight [Ann. Phys. 186, 381 (1988)] of the JCM by considering mixed states of both the light and matter. We present examples of qualitatively different entropic correlations. In particular, we explore the regime of entropy exchange between light and matter, i.e., where the rate of change of the two are anticorrelated. This behavior contrasts with the case of pure light-matter states in which the rate of change of the two entropies are positively correlated and in fact identical. We give an analytical derivation of the anticorrelation phenomenon and discuss the regime of its validity. Finally, we show a strong correlation between the region of the Bloch sphere characterized by entropy exchange and that characterized by minimal entanglement as measured by the negative eigenvalues of the partially transposed density matrix.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 16 December 2004

DOI:https://doi.org/10.1103/PhysRevA.71.063821

©2005 American Physical Society

Authors & Affiliations

E. Boukobza and D. J. Tannor

  • Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 71, Iss. 6 — June 2005

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review A

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×