Single-photon Kerr nonlinearities do not help quantum computation

Jeffrey H. Shapiro
Phys. Rev. A 73, 062305 – Published 7 June 2006

Abstract

By embedding an atom capable of electromagnetically induced transparency inside an appropriate photonic-crystal microcavity it may become possible to realize an optical nonlinearity that can impart a π-rad-peak phase shift in response to a single-photon excitation. Such a device, if it operated at high fidelity, would then complete a universal gate set for all-optical quantum computation. It is shown here that the causal, noninstantaneous behavior of any χ(3) nonlinearity is enough to preclude such a high-fidelity operation. In particular, when a single-photon-sensitive χ(3) nonlinearity has a response time that is much shorter than the duration of the quantum computer’s single-photon pulses, essentially no overall phase shift is imparted to these pulses by cross-phase modulation. Conversely, when this nonlinearity has a response time that is much longer than this pulse duration a single-photon pulse can induce a π-rad overall phase shift through cross-phase modulation, but the phase noise injected by the causal, noninstantaneous response function precludes this from being a high-fidelity operation.

  • Figure
  • Figure
  • Figure
  • Received 3 February 2006

DOI:https://doi.org/10.1103/PhysRevA.73.062305

©2006 American Physical Society

Authors & Affiliations

Jeffrey H. Shapiro

  • Massachusetts Institute of Technology, Research Laboratory of Electronics, Cambridge, Massachusetts 02139, USA

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 73, Iss. 6 — June 2006

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review A

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×