Electronic and optical properties of anatase TiO2

R. Asahi, Y. Taga, W. Mannstadt, and A. J. Freeman
Phys. Rev. B 61, 7459 – Published 15 March 2000
PDFExport Citation

Abstract

First-principles calculations using the full-potential linearized augmented plane-wave method have been performed to investigate detailed electronic and optical properties of TiO2 in the anatase structure. The fully optimized structure, obtained by minimizing the total energy and atomic forces, are in good agreement with experiment. Stabilization of the structure by the trade off between a favorable coordination in the sp2 hybridization and the Coulomb repulsion among oxygen atoms is also demonstrated. We calculate band structure, densities of states and charge densities, and interpret their features in terms of the bonding structure in the molecular orbital picture. The optical properties, calculated within the dipole approximation, are found to agree with recent experiments on single crystals of anatase TiO2. Near the absorption edge, the results show a significant optical anisotropy in the components parallel and perpendicular to the c axis. We demonstrate that this large dichroism results from the existence of nonbonding dxy orbitals located at the bottom of the conduction bands, which allows direct dipole transitions dominantly for the perpendicular component.

  • Received 17 August 1999

DOI:https://doi.org/10.1103/PhysRevB.61.7459

©2000 American Physical Society

Authors & Affiliations

R. Asahi and Y. Taga

  • Toyota Central R&D Laboratories, Inc., Nagakute, Aichi 480-1192, Japan

W. Mannstadt

  • Fachbereich Physik, Philipps-Universitat Marburg, 35032 Marburg, Germany

A. J. Freeman

  • Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208

References (Subscription Required)

Click to Expand
Issue

Vol. 61, Iss. 11 — 15 March 2000

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×