Temperature effects on the static and dynamic properties of liquid water inside nanotubes

J. Martí and M. C. Gordillo
Phys. Rev. E 64, 021504 – Published 18 July 2001
PDFExport Citation

Abstract

We report a molecular dynamics simulation study of the behavior of liquid water adsorbed in carbon nanotubes under different thermodynamic conditions. A flexible simple point charged potential has been employed to model internal and intermolecular water interactions. Water-carbon forces are modeled with a Lennard-Jones-type potential. We have studied three types of tubes with effective radii ranging from 4.1 to 6.8 Å and three temperatures, from 298 to 500 K for a fixed density of 1 g/cm3. Structure of each thermodynamic state is analyzed through the characterization of the hydrogen-bond network. Time-dependent properties such as the diffusive behavior and molecular vibrational spectra are also considered. We observe the gradual destruction of the hydrogen-bond network together with faster diffusive regimes as temperature increases. A vibrational mode absent in bulk unconstrained water appears in the power spectra obtained from hydrogen velocity autocorrelation functions for all thermodynamic states. That frequency mode should be attributed to confinement effects.

  • Received 26 February 2001

DOI:https://doi.org/10.1103/PhysRevE.64.021504

©2001 American Physical Society

Authors & Affiliations

J. Martí

  • Departament de Física i Enginyeria Nuclear, Universitat Politècnica de Catalunya, B5 Campus Nord, 08034 Barcelona, Catalonia, Spain

M. C. Gordillo

  • Departamento de Ciencias Ambientales, Facultad de Ciencias Experimentales, Universidad Pablo de Olavide. Carretera de Utrera Km 1, 41013 Sevilla, Spain
  • Departament de Física i Enginyeria Nuclear, Universitat Politècnica de Catalunya, B5 Campus Nord, 08034 Barcelona, Catalonia, Spain

References (Subscription Required)

Click to Expand
Issue

Vol. 64, Iss. 2 — August 2001

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review E

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×