Skip to main content

Volume 60 Supplement 5

Special Issue: Geohazards and the Role of Space-Born Observations

Southern Ocean mass variation studies using GRACE and satellite altimetry

Abstract

The Southern Ocean is a major link between the world oceans via complicated processes associated with the melting and accumulation of the vast Antarctic ice sheets and the surrounding sea ice. The Southern Ocean sea level is poorly observed except from recent near-polar orbiting space geodetic satellites. In this study, the Southern Ocean mass variations at the seasonal scale are compared using three independent data sets: (1) the Gravity Recovery And Climate Recovery Experiment (GRACE) observed ocean bottom pressure (OBP), (2) steric-corrected satellite altimetry (ENVISAT) and, (3) the Estimating the Circulation and Climate of the Ocean (ECCO) model OBP data. The height difference between sea level derived from altimetry and steric sea level contains the vertical displacement of the Earth surface due to elastic loading. Here we provide a formulation of this loading term which has not been considered previously in other studies and demonstrate that it is not negligible, especially for regional studies. In this study, we first conduct a global comparison using steric-corrected JASON-1 altimetry with GRACE to validate our technique and to compare with recent studies. The global ocean mass variation comparison shows excellent agreement with high correlation (0.81) and with discrepancies at 3–5 mm RMS. However, the discrepancies in the Southern Ocean are much larger at 12–17 mm RMS. The mis-modeling of geocenter variations and the second degree zonal harmonic (J2) degrade the accuracy of GRACE-derived mass variations, and the choice of ocean temperature data sets and neglecting the loading correction on altimetry affect the OBP comparisons between GRACE and altimetry. This study indicates that the satellite observations (GRACE and ENVISAT) are capable of providing an improved constraint of oceanic mass variations in the Southern Ocean.

References

  • Andersen, O. and J. Hinderer, Global inter-annual gravity changes from GRACE: Early results, Geophys. Res. Lett., 32, L01402, doi:10. 1029/2004GL020948, 2005.

    Google Scholar 

  • Aoki, S., Coherent sea level response to the Antarctic Oscillation, Geophys. Res. Lett., 29(20), 1950, doi:10.1029/2002GL015733, 2002.

    Article  Google Scholar 

  • Cabanes, C., A. Cazenave, and C. Le Provost, Sea level changes from TOPEX-POSEIDON altimetry for 1993–1999 and possible warming of the Southern Oceans, Geophys. Res. Lett., 28(1), 9–12, 2000GL011962, 2001.

    Article  Google Scholar 

  • Cazenave, A., F. Remy, K. Dominh, and H. Douville, Global ocean mass variation, continental hydrology and the mass balance of Antarctica ice sheet at seasonal time scale, Geophys. Res. Lett., 27, 3755–3758, 2000.

    Article  Google Scholar 

  • Chambers, D., Observing seasonal steric sea level variations with GRACE and satellite altimetry, J. Geophys. Res., 111, C03010, doi:10. 1029/2005JC002914, 2006.

    Google Scholar 

  • Chambers, D., J. Wahr, and R. Nerem, Preliminary observations of global ocean mass variations with GRACE, Geophys. Res. Lett., 31, L13310, doi:10.1029/2004GL020461, 2004.

    Article  Google Scholar 

  • Chen, J. L., C. R. Wilson, R. J. Eanes, and R. S. Nerem, Geophysical interpretation of observed geocenter variations, J. Geophys. Res., 104(B2), 2683–2690, 1999.

    Article  Google Scholar 

  • Chen, J. L., C. R. Wilson, B. D. Tapley, J. S. Famiglietti, and M. Rodell, Seasonal global mean sea level change from satellite altimeter, GRACE, and geophysical models, J. Geod., 79, 532–539, doi:10.1007/s00190-005-0005-9, 2005.

    Article  Google Scholar 

  • Davis, J., P. Elosequi, J. Mitrovica, and M. Tamisiea, Climate-driven deformation of the solid Earth from GRACE and GPS, Geophys. Res. Lett., 31, L24605, doi:10.1029/2004GL021435, 2004.

    Article  Google Scholar 

  • Fenoglio-Marc, L., J. Kusche, and M. Becker, Mass variation in the Mediterranean Sea from GRACE and its validation by altimetry, steric and hydrologic fields, Geophys. Res. Lett., 33, L19606, doi:10. 1029/2006GL026851, 2006.

    Article  Google Scholar 

  • Fukumori, I., A partitioned Kalman filter and smoother, Monthly Weather Rev., 130, 1370–1383, 2002.

    Article  Google Scholar 

  • Fukumori, I., R. Raghunath, L. Fu, and Y. Chao, Assimilation of TOPEX/POSIEDON altimeter data into a global ocean circulation model: How good are the results?, J. Geophys. Res., 104(C11), 25,647–25,665, 1999.

    Article  Google Scholar 

  • Garcia, D., G. Ramillien, A. Lombard, and A. Cazenave, Steric sealevel variations inferred from combined Topex/Poseidon altimetry and GRACE gravimetry, Pure Appl. Geophys., 164, 721–731, 2007.

    Article  Google Scholar 

  • Gille, S.,Warming of the Southern Ocean, Science, 295, 1275–1277, 2002.

    Article  Google Scholar 

  • Gille, S., How nonlinearities in the equation of state of seawater can confound estimates of steric sea level change, J. Geophys. Res., 109, C03005, doi:10.1029/2003JC002012, 2004.

    Google Scholar 

  • Greatbatch, R. J., A note on the representation of steric sea level in models that conserve volume rather than mass, J. Geophys. Res., 99, 12767–12771, 1994.

    Article  Google Scholar 

  • Guo, J. Y., Y. B. Li, Y. Huang, H. T. Deng, S. Q. Xu, and J. S. Ning, Green’s function of the deformation of the Earth as a result of atmospheric loading, Geophys. J. Int., 159, 53–68, doi:10.1111/j.1365-246X.2004.02410.x, 2004.

    Article  Google Scholar 

  • Han, S. C., C. K. Shum, and A. Braun, High-resolution continental water storage recovery from low-low satellite-to-satellite tracking, J. Geodyn., 39, 11–28, 2005a.

    Article  Google Scholar 

  • Han, S. C., C. K. Shum, C. Jekeli, C. Y. Kuo, C. Wilson, and K. W. Seo, Non-isotropic filtering of GRACE temporal gravity for geophysical signal enhancements, Geophys. J. Int., 163(1), 18–25, doi:10.1111/j.1365- 246X.2005.02756.x, 2005b.

    Article  Google Scholar 

  • Ishii, M., M. Kimoto, K. Sakamoto, and S. I. Iwasaki, Steric sea level changes estimated from historical ocean subsurface temperature and salinity analyses, J. Oceanogr., 62, 155–170, 2006.

    Article  Google Scholar 

  • Kuo, C., C. Shum, A. Braun, I. Fukumori, Z. Xing, and Y. Yi, Southern Ocean sea level variation studies using steric data, GRACE ocean mass variations and ocean modeling, Proc. Gravity, Geoid and Space Mission (Abstract), Porto, Portugal, August 30–September 3, 2004a.

    Google Scholar 

  • Kuo, C. Y., A. Braun, S. C. Han, C. K. Shum, Y. Yi, K. Shibuya, K. Doi, and K. Matsumoto, Oceanic mass constraint studies in East Antarctica Ocean, Proc. 15th International Symposium on Earth Tides (Abstract), Ottawa, Canada, August 2–6, 2004b.

    Google Scholar 

  • Lee, T. and I. Fukumori, Interannual to decadal variation of tropicalsubtropical exchange in the Pacific Ocean: boundary versus interior pycnocline transports, J. Climate, 16, 4022–4042, 2003.

    Article  Google Scholar 

  • Lombard, A., D. Garcia, G. Ramillien, A. Cazenave, R. Biancale, J. M. Lemoine, F. Flechtner, R. Schmidt, and M. Ishii, Estimation of steric sea level variations from combined GRACE and Jason-1 data, Earth Planet. Sci. Lett., 254, 194–202, doi:10.1016/j.epsl.2006.11.035, 2007.

    Article  Google Scholar 

  • Marshall, J. C., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, A finitevolume, incompressible Navier Stokes model for studies of the ocean on parallel computers, J. Geophys. Res., 102, 5753–5766, 1997.

    Article  Google Scholar 

  • Matsumoto, K., T. Sato, H. Fujimoto, Y. Tamura, M. Nishino, R. Hino, T. Higashi, and T. Kanazawa, Ocean bottom pressure observation off Sanriku and comparison with ocean tide models, altimetry, and barotropic signals from ocean models, Geophys. Res. Lett., 33, L16602, doi:10.1029/2006GL026706, 2006.

    Article  Google Scholar 

  • Orsi, A. H., T. Whitworth, and W. D. Nowling, On the meridional extent and fronts of the Antarctic Circumpolar Current, Deep Sea Res., Ser. I, 42, 641–673, 1995.

    Article  Google Scholar 

  • Ries, J., Low degree harmonics in GRACE monthly solutions, Joint CHAMP/GRACE Science Meeting, http://www.gfz-potsdam.de/pb1/JCG, Potsdam, Germany, July 5–8, 2004.

    Google Scholar 

  • Shum, C., S. Han, C. Kuo, K. Seo, and C. Wilson, Assessment of GRACE time-variable gravity observables: A new filtering technique to enhance signal spatial resolutions, Eos Trans. AGU, 85(47), Fall Meet. Suppl., Abstract G31C-0814, San Francisco, December 13–17, 2004.

    Google Scholar 

  • Sigman, D., S. Jaccard, and G. Haug, Polar ocean stratification in a cold climate, Nature, 428, 59–63, 2004.

    Article  Google Scholar 

  • Song, Y. T. and V. Zlotnicki, Subarctic ocean-bottom-pressure oscillation and its link to the tropical Pacific ENSO oscillation, J. Climate, 2005 (in press).

    Google Scholar 

  • Stephens, J., T. Antonov, T. P. Boyer et al., World Ocean Atlas 2001, vol. 1, Temperatures, NOAA Atlas NESDIS 49, edited by S. Levitus, 176 pp., U.S. Govt. Print. Office, Washington, D.C., 2002.

  • Tapley, B. D., S. Bettadpur, M. Watkins, and C. Reigber, The Gravity Recovery and Climate Experiment; Mission Overview and Early Results, Geophys. Res. Lett., 31(9), 10.1029/2004GL019920, 2004a.

    Google Scholar 

  • Tapley, B. D., S. Bettadpur, J. Ries, P. Thompson, and M. Watkins, GRACE Measurements of Mass Variability in the Earth System, Science, 305, 503–505, 2004b.

    Article  Google Scholar 

  • Wahr, J., Deformation induced by polar motion, J. Geophys. Res., 90, 9363–9368, 1985.

    Article  Google Scholar 

  • Wahr, J., M. Molenaar, and F. Bryan, Time variability of the Earth’s gravity field: Hydrological and oceanic effects and their possible detection using GRACE, J. Geophys. Res., 103(B12), 30,205–30,229, 1998.

    Article  Google Scholar 

  • Wahr, J., S. Swenson, V. Zlotnicki, and I. Velicogna, Time-variable gravity from GRACE: First results, Geophys. Res. Lett., 31, L11501, doi:10. 1029/2004GL019779, 2004.

    Article  Google Scholar 

  • Zlotnicki, V., J. Wahr, I. Fukumori, and Y. T. Song, Antarctic circumpolar current transport variability during 2003–05 from GRACE, J. Phys. Oceanogr., 37, 230–244, 2007.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chung-Yen Kuo.

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Cite this article

Kuo, CY., Shum, C.K., Guo, Jy. et al. Southern Ocean mass variation studies using GRACE and satellite altimetry. Earth Planet Sp 60, 477–485 (2008). https://doi.org/10.1186/BF03352814

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1186/BF03352814

Key words