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Abstract 

For the Buck-fed DC motor system with parameter uncertainties and external 

disturbances, an adaptive robust controller is proposed based on dynamic surface control 

and slide mode control method. The derived adaptive robust control guarantees the closed-

loop errors system is uniform ultimately bounded, and the parameters update laws are 

designed based on the uncertainty equivalence principle. The theoretical analysis and 

simulation results all reveal that the developed adaptive nonlinear robust controller is not 

sensitive to uncertainties of system, and owns simpler configuration and more accurate 

tracking performance than that of conventional backstepping control or PID control method. 

Keywords: buck converter, parameter uncertainty, external disturbances, dynamic surface 

control, slide mode control 

 

1. Introduction 

DC-DC Buck converter is one of the basic power electronic circuits, and it has been 

widely used in the fields of DC power supplies and DC motor speed regulating systems.  

Generally speaking, different approaches for switching control of Buck converter 

have the following three control objectives. The first one is concentrated on proper  

control of the switching for DC-DC converter to accomplish a zero steady-state error 

between the output voltage and the desired setpoint . In the second one, satisfactory 

transient responses can be achieved when the system is subject to perturbations  on load 

currents or line input voltages. Thirdly, much of the work in the control of DC-DC 

converters has been focused on the applications of linear control methods. 

So far, both linear and nonlinear control strategy have been used to improve the 

performance of Buck converters (see [1-3], and the references therein). The 

disadvantage of linear control method, such as feedback linearization , is that the 

feedback control is valid only in the neighborhood of the operating point, so linear 

controller is not easy to achieve global accurate response because of the non-linearity of 

Buck converters. In recent years, with the application of differential geometric theories 

and nonlinear control technologies, DC-DC converters can be transformed into linear 

ones firstly, and then linear control methods can be used. But it must be noted that, 

some nonlinear control methods, such as differential geometric theories, need  the exact 

dynamic models of DC-DC converters. At the same time, to the authors’ best 

knowledge, little attention, to date, has been focused on nonlinear control of Buck 

converters with parametric uncertainties and exogenous disturbances.  

In order to overcome the above limitations, robust and adaptive nonlinear control 

(RANC) has been widely studied, and there are fruitful results in a considerable amount 

of literature [4-6]. Backstepping approach presented in [6-8] may be the most 
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successful one. The basic thought of this approach is the so-called certainty equivalence 

principle. In this approach, model errors and external disturbances are taken as a special 

kind of uncertain parameters. The common procedure of backstepping is to transform 

the controlled nonlinear systems into linear feedback form firstly, then find a parameter 

adaptive law such that a quadratic function of the states and the parameter estimation 

errors becomes a Lyapunov function for the closed-loop system. In other words, the 

parameter-dependent terms will be canceled out from the derivative of the Lyapunov 

function, thus the global stability and boundedness of closed-loop signals can be 

guaranteed. A shortcoming of this approach is that the controlled systems must meet the 

so-called matching condition, i.e. the control input and the unknown parameter must 

enter the same integrator of the system state. However, most nonlinear systems do not 

satisfy this condition. In order to achieve RANC of these systems, the above 

cancellation must be carried out for many times. As a result, over-parameterized 

problem and complex controller are inevitable. In order to solve this problem, dynamic 

surface control (DSC) method was proposed. Due to the addition of first-order low-pass 

filters in the DSC approach
 
[9-11], there is no need for repetitive differentiation of the 

nonlinear terms of the system model. Compared to the traditional backstepping method, 

the explosion of differential terms can be avoided. As a benefit, the complexity of the 

designed controller is reduced and the design procedure is much simpler than that of 

traditional backstepping control.  

In this paper, a new improved DSC approach is proposed for the nonlinear DC motor 

system fed by Buck converter which can be feedback linearized but need not satisfy 

matching condition. Compared with conventional backstepping or DSC methods, apart 

from preserving the above mentioned advantages, the parameters update laws are 

designed on uncertainty equivalence principle. 

The rest of this paper is organized as follows. In Section 2, the problem description is 

given along with the estimator design and controller design. The stability analysis of 

closed-loop system is presented in Section 3. In Section 4, the simulation is performed 

on the buck converter. Finally, this paper is concluded in Section 5 with a brief 

discussion of the results obtained. 

 

2. Description of System Model 

The DC motor system fed by a Buck converter under consideration is depicted in 

Figure 1. The system model is described as follows [12]. 
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where i is the converter input current, ia is the DC motor armature current, v is the 

converter output voltage, ω is the motor angular velocity, TL is the load torque, u is the 

control input, km is the torque contant, ke is the EMF constant, J is the moment of 

inertia, and f is the coefficient of friction. 
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Figure 1. DC Motor System Fed by Buck Chopper 

We define the state variable as x={x1, x2, x3, x4}, where x1, x2, x3, x4 denote the 

average values of the angular velocity ω, the DC motor armature current ia, the 

converter output voltage v and the converter input current i, respectively. Then (1) can 

be rewritten as  
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For (2), the some uncertainties should be considered. We set 
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uncertainties, and di (i=1,…,4) is defined as the broad-sense bounded uncertainty, then 

system (2) is transformed as follows. 
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For system (3), we have the following assumptions.  

Assumption 1. )4,,1(, ix
i

 are both measurable, and reference signal
1

1
Cx

d
 .  

Assumption 2. Rd
i
  and satisfies

ii
ad  , where 

i
a  is a known positive constant, 

i=1,…,4. 
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3. Controller Design 

For (3)，we define the surface error as follows. 

idii
xxe  ,                                                        (4) 

where x1d is the reference trajectory, xid (i=2,…,4) will be given later on by the first 

order filter. 

Define the boundary layer errors as  
*
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where xi+1
*
(i=1,…,3) is the stabilizing function which will also be designed later on.  

Now we will show a new dynamic surface control procedure for the robust adaptive 

controller of the system defined in (3). 
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Consider the first Lyapunov function V1 candidate as follows. 
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where c1 and γ1 are all larger than zero，θ1=[θ11  θ12]
T
, φ(x1)=[x1  1],  
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The first parameter update law is taken as follows based on the uncertainty equivalence 

principle. 
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Therefore the dynamics of the estimation errors are 
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Then we have 
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Step2: Let *

2
x  be an input and passed through a first-order filter as follows. 
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where design constants c2>0 and γ2>0, θ2=[θ21  θ22]
T
, φ(x1, x2)=[x1  x2],  
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The dynamics of the second estimation errors are 
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Step3：Let *
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x  be an input and passed through a first-order filter as follows. 
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Select the third stabilizing function as 
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Step4: Let *

4
x  be an input and passed through a first-order filter as follows. 
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Define the sliding mode s=b1e1+b2e2+b3e3+e4=0 which satisfies asymptotic reached 

condition, where bi are positive design constants, and define the Lyapunov function of 

whole system as follow. 
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where  Γ=diag{λ1, λ2}>0 is the gain metric. 

The time derivative of V is  
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In the new coordinate defined by (4)-(34), we have an important theorem as follows. 

Theorem 1. For nonlinear systems (3) in parameter feedback form with parameter 

uncertainty and external disturbances, the closed-loop errors system will be uniformly 

ultimately bounded if we apply the robust adaptive control law (33), the stabilizing 

function(9), (17), (25) and the parameter adaptive laws (10) and (18).  

Proof. The time derivative of storage function V gives  
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where σ>0 is a design constant. 

It follows 
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Select c1>1+km/J+m1, c2>1+km/(2J)+m2+1/Lm, c3>1/(2Lm) +m3+1/C, m4+1/(2C)<0, β2>0, 
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system errors are uniformly ultimately bounded. □ 

Remark 1. When the external disturbances di disappear, the whole system wtill be 

global uniformly ultimately bounded. 

Remark 2. For the selection of designed constants, it seems that the value of Gmax  

needs to be decided. But in fact, this is not completely such. When control gain  g(x1) is 

constant, we can know the real value of Gmax definitely. When g(x1) is a bounded 

function, we only set ci, 1/τi as large enough to guarantee the stability and some 

performance of system by trial and errors.  

 

4. Simulation Results 

In This Section, we simulated the closed-loop system under the designed controller.  

The system parameters are in the following:  L=20×10
-3

H, C=400×10
-6

F, km=0.046, 

Lm=2.63×10
-3

H, J=7.06×10
-5

kg*m
2
, f=8.42×10

-4
N-m/rad, ωd=50rad/sec, Rm=2Ω, 

ke=0.05, TL=0.05N.m, E=12V, 92.11
11

 , 21.708
12

 , 01.19
21

 , 45.760
22

 . 
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Set d1=0.01sinx1, d2=0.05cosx2, d3=0.2sinx3, d4=0.1cosx4. The relevant design 

parameters are taken as follows. c1=5000, c2=5000, c3=8000, γ=0.1, β1=20000, β2=10, 

b1=0.2, b2=0.05, b3=0.05, m4=–8000, m3=3450, m2=2200, m1=1600, λ1=λ2=1.05, σ=100, 

τ2=0.002=τ3, τ4=0.0005, )0(x 0)0(ˆ 
i

 . 

When the reference signals is set as x1d=[120 120 160 160 120 120] at time=[0 0.5 

1.0 1.5 2.0 2.5], the simulation results are shown in Figs. 2-3. 

As Fig. 2 shows, although the bounded disturbances have been imposed on the 

system states, but under the designed controller, the motor speed can track the reference 

signal, and reach the steady state in a very short period of time, it has the very good 

convergence and robustness. 
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Figure 2 The Actual Speed Responding and Reference Speed Curves 

 
We also compare the control performance of the proposed controller with that of PID 

control. From Fig. 3, the responding speed and adjusting time of the motor speed under the 

proposed controller is superior to that of PID control. The proposed controller has the 

advantages of high accuracy, fast response and little overshoot. 
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Figure 3. The Speed Responding Curves under the Proposed Controller and under 

the PID Control 

 

5. Conclusions 

Based on the nonlinear model of DC motor system, a novel adaptive robust DC 

motor controller is designed by combining the sliding mode control with the dynamic 

surface control design. The uncertainties of system parameters and disturbances are 

taken into consideration, and the parameters updated law is based on the uncertainty 

principle of equivalence. At the same time, dynamic surface control avoids the 

explosion of differential terms by using a low pass filter, thus the design method and 

process are further simplified. The simulation  results verified the effectiveness of the 

proposed control method. 
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