
International Journal of Grid and Distributed Computing

Vol. 9, No. 5 (2016), pp.229-240

http://dx.doi.org/10.14257/ijgdc.2016.9.5.20

ISSN: 2005-4262 IJGDC

Copyright ⓒ 2016 SERSC

Comparative Study of Multi-query Optimization Techniques

using Shared Predicate-based for Big Data

Radhya Sahal
1
, Mohamed H. Khafagy

2
 and Fatma A. Omara

3

1,3
 Department of Computer Science, Faculty of Computers & Information,

Cairo University, Egypt
2
 Department of Computer Science, Faculty of Computers & Information,

Fayoum University, Egypt
1
radhya.sahal@grad.fci-cu.edu.eg,

2
mhk00@fayoum.edu.eg

3
f.omara@fci-cu.edu.eg

Abstract

Big data analytical systems, such as MapReduce, have become main issues for many

enterprises and research groups. Currently, multi-query which translated into

MapReduce jobs is submitted repeatedly with similar tasks. So, exploiting these similar

tasks can offer possibilities to avoid repeated computations of MapReduce jobs.

Therefore, many researches have addressed the sharing opportunity to optimize multi-

query processing. Consequently, the main goal of this work is to study and compare

comprehensively two existed sharing opportunity techniques using predicate-based

filters; MRShare and relaxed MRShare. The comparative study has been performed over

TPC-H benchmark and confirmed that the relaxed MRShare technique significantly

outperforms the MRShare for shared data in terms of predicate-based filters among

multi-query.

Keywords: Big data, MapReduce, Sharing Opportunity, Multi-Query Optimization,

filter, predicates

1. Introduction

Big Data has been grown rapidly in many domains such as social networks and other

information systems. The need for distributed computing is become an important issue

due to the increasing of workstations power and the data sets sizes. The development and

implementation of distributed system for Big Data applications are considered a challenge

[1-3]. One of the popular frameworks that have emerged for Big Data processing is

MapReduce. It was first introduced by Google in 2004 [4]. The main concept of

MapReduce is to abstract the details of a large cluster of machines to facilitate the

computation on large datasets.

On the other hand, Multiple Query Optimization (MQO) problem has been introduced

in the 1980s which considered as well-known database research problem [5]. It dominates

in many business applications, artificial intelligent and many research areas in relational

databases. Regarding single query in database optimization era, the query optimizer

selects the cheaper costly execution plan (i.e., a method to get correctly exact answer for

query) [6] . By extending the query to be multiple queries, the problem denotes as how to

define the optimal execution plan with a minimum cost which can answer all the entire

queries and improve the overall time of execution plans. It aims to identify the shared

common subexpressions (CSEs) among queries and exploit them to reduce the query

evaluation cost [6].

Fundamentally, MapReduce system is one of the most popular parallel processing

systems in Big Data. However, the parallel processing systems consume an enormous

mailto:mhk00@fayoum.edu.eg

International Journal of Grid and Distributed Computing

Vol.9, No.5 (2016)

230 Copyright ⓒ 2016 SERSC

amount of resources to process large data size. The optimization of data processing

systems especially redundant computation tasks can efficiently improve the performance,

as well as, the resource utilization. On the other words, sharing similar tasks can reduce

the overall amount cost of computation, which can contribute to reducing incurred

financial charges while utilizing the processing infrastructure [7]. Many applications

often involve complex multiple shared queries which share a lot CSEs. Identifying and

exploiting the CSEs to improve query performance is essential for these applications.

Multi-query optimizations, which aims to detect and exploit the CSEs among queries in

order to reduce the overall query evaluation cost, has been extensively studied for over

two decades and demonstrated to be an effective technique in both Relational Database

Management Systems and MapReduce contexts [7-13].

Principally, MRShare is considered the state-of-the-art for improving the performance

of multi-query optimization using MapReduce [7]. On the other hand, the relaxed

MRShare introduces more comprehensive with additional optimization techniques [9].

Both the MRShare and relaxed MRShare are proposed for computational aggregated

multi-query optimization. However, the shared predicate-based filters for large-scale data

analytics in MapReduce can also benefit to exploit the sharing. Consequently, the goal of

this paper is to study and compare two existed works; the MRShare and relaxed MRShare

techniques [7, 9]. The aim of this study is to investigate that not only the shared

computation can gain optimization in Big Data environment, but also the multi-query

optimization for shared data using predicate-based filters can open up new opportunities

to gain significant improvement by reducing redundant filtering tasks.

The rest of this paper is organized as follows. Related work is described in Section 2.

The multi-query optimization in MapReduce is introduced in Section 3. The comparative

techniques for multi-query optimization MapReduce based are described in Section 4.

The predicate-based query filter concept with an illustrative example of comparative

techniques are described Section 5. The analysis of comparative techniques is presented

in Section 6. Finally, conclusions are presented in Section 7.

2. Related Work

MapReduce is one of the most popular parallel processing platforms. There are several

works have been done in query optimization MapReduce-based. One of the preliminary

work concerns concurrent batch exaction queries MapReduce is MRShare [7]. MRShare

is a concurrent sharing framework. However, the proposed work in [9] has relaxed and

generalized MRShare overlapping queries to increase the sharing opportunities in a

single job. Moreover, they have proposed a novel cost-based two-phase approach to

finding optimal evaluation plans.

ReStore is a non-concurrent sharing system built on top of Pig [8]. It optimizes query

evaluation using materialized results. According to a space budget for storing

materialized results, ReStore uses heuristics algorithm to choose the suitable materialized

results even the complete or part of the map and/or reduce the output of each job. The

materialized output which is produced by ReStore might not be reused at all if the query

workloads are not repeated again. Thus, the concurrent shared queries need more

investigation to overcome storing unused results.

More recent works in [12, 14] consider reusing results stored by exploiting

MapReduce intermediate results for failure resilience reasons as materialized views. In

particular, semantic UDF models based on Hive has been used to enable effectively reuse

views where subsequent queries can be evaluated faster [12]. On the other side, a multi-

query optimization framework, SharedHive, is proposed to transform a set of correlated

HiveQL into new optimized queries sets with respect to sharing scan and computation

tasks [10]. Because Pig is considered the popular language within the data management

in the parallel processing of large data volumes, reused-base optimization has been

International Journal of Grid and Distributed Computing

Vol.9, No.5 (2016)

Copyright ⓒ 2016 SERSC 231

addressed for Pig scripts [15]. According to the work in [15], PigReuse has been proposed

to identify and reuse common subexpressions occurring in Pig Latin scripts and select the

best ones to be merged based on a cost-based search process which is implemented with

the help of a linear program solver.

Indeed, both MRShare and relaxed MRShare are used to optimize aggregation queries.

Regarding this paper, the MRShare and relaxed MRShare are chosen to compare the

evaluation of the multi-query optimization for shared predicate-based filters which have a

same key idea and applied for shared computation optimization.

3. Multi-Query Optimization in MapReduce

In this section, the overview of multi-query optimization will be introduced. Then, the

MapReduce query processing will be described which is considered the backbone of the

comparable techniques in this work. In addition, the general differences between multi-

query optimization in Database Management Systems (DBMS) and MapReduce will be

discussed.

3.1 Overview of Multi-Query Optimization

Multiple Query Optimization (MQO) is a well-known problem in database research. It

describes how to efficiently produce answers to a set of queries with common tasks. By

given a set of queries, each query has a set of alternative execution plans and each plan

has a set of tasks. MQO aims to choose an appropriate plan for each query and minimize

the total execution time by performing common tasks only once [16, 17].

MQO is considered as an NP-Hard optimization problem where their algorithms such

as heuristics and genetic algorithms are mostly approximate or produce near optimal

solution. Since these solutions for MQO problem should find the set of plans that produce

the answer of each query and included in the minimum cost global execution plan (i.e., a

set of plans that answer every and each one of a set of queries) [6]. Whereas, many

optimization solutions have been introduced to find the optimal plan based on

materialized results (i.e., intermediate results and final answer) which produced from

earlier queries [17, 18]. Figure 1 depicts the three basic multi-query optimization

techniques listed as follows:

1) Naive technique; each query runs isolated from other queries.

2) Grouping technique; only one instance of the query will be run for a set of identical

queries.

3) Materialization technique; when some queries materialized their results or part of

their results to other queries.

International Journal of Grid and Distributed Computing

Vol.9, No.5 (2016)

232 Copyright ⓒ 2016 SERSC

Figure 1. Multi-Query Optimization Techniques

3.2 MapReduce Query Processing

Besides efficiency, MapReduce provides two simple user-friendly interfaces; map and

reduce function. Furthermore, MapReduce supports query processing by integrating with

high-level declarative languages such as Hive [19, 20] and Pig [21] to simplify

application programming. These MapReduce-based query languages hide the

implementation details (e.g., access methods, query plan optimization) and offer an SQL-

like interface for developers and Big Data analysts. However, the optimizer of

MapReduce-based query languages suffers from the high cost of saving intermediate

results. For more details, each MapReduce job is flushed back to HDFS as a backup for

fault tolerance. The next MapReduce job reads the intermediate results of the previous job

to continue processing. The HDFS I/O cost is significantly higher than local storage (i.e.,

there is Network cost) that use load balance [22, 23]. So, exploiting shared jobs can

reduce intermediate results, and can be cheaper than generating too large size of

intermediate results in the case of using an original data source for each query separately

[24, 25].

3.3 Difference between Multi-Query Optimization on DBMS and Map Reduce

There are several works have been done for optimizing query processing based on

MapReduce jobs. Multi-query optimization MapReduce-based is significantly different

from multi-query optimization in DBMS in the following three points; 1) MapReduce is

based on a block operator, with all internal results of map phase required to be physically

materialized to reduce phase; 2) Parallel scanning processing is the main MapReduce

strategy and no pipeline is supported; and 3) Shuffling phase which concerns of data

transferring between mappers and reducers [24]. Therefore, there are differences of multi-

query optimization solutions for pruning bad plans in DBMS and MapReduce which

considered the popular processing analytical system in Big Data era. Table 1 identifies a

brief of comparison between multi-query optimization in DBMS and multi-query

optimization MapReduce-based with respect to two different optimization types; non-

concurrent optimization and concurrent optimization [25].

International Journal of Grid and Distributed Computing

Vol.9, No.5 (2016)

Copyright ⓒ 2016 SERSC 233

Table 1. Comparison between Multi-Query Optimization in DBMS and
Map Reduce

Optimization Type DBMS MapReduce

Non-concurrent

Use Materialized Views.

Translates the input multi-query

into jobs.

Uses the output from past sub

jobs such as map output, reduce

input or combined with them.

Matcher: matches all candidate

views and the query optimizer

select the best one to optimize

the global plan.

Matcher: searches in the

previous executed sub-jobs or

jobs that can be used to answer

all or part of new jobs.

Rewriter generates the new

expression using the

enumerated views to output the

original query by adding

operators, predicates, and

indices.

Rewriter rewrites the input

jobs using the enumerated

reused jobs outputs which

stored previously.

Concurrent

Identifies the common

subqueries and executes them

only once.

Identifies the sharing tasks or

sub-jobs and grouping them for

running only once.

Due, the optimization in

MapReduce had different

optimization levels such as

shared scan and shared

shuffling, the concurrent

optimization causes extra I/O

cost for large file size especially

in the case of low I/O speed

Hadoop environment.

4. Comparative Techniques of Multi-Query Optimization on

MapReduce Environment

The aim of the work in this paper is to compare the performance evaluation of the two

existed techniques of multi-query optimization MapReduce-based for shared

computation; MRShare and Relaxed MRShare. These two techniques will be discussed in

details.

4.1 MRShare

MRShare is considered one of the preliminary work concerning concurrent batch

execution queries in MapReduce [7]. MRShare is a concurrent sharing framework

which can share portions of identical work to avoid redundant computation. It considers

the following sharing opportunities:

1) Sharing Scans; for the same map tasks against the same input file, the input data

would be scanned only once.

2) Sharing Map Outputs; for the key-values pairs of the same mapping tasks, only one

sorted and transferred tasks would be performed.

3) Sharing Map Functions; it is similar to multi-query optimization and avoids

redundancy computation for a batch of queries executed at the same time.

International Journal of Grid and Distributed Computing

Vol.9, No.5 (2016)

234 Copyright ⓒ 2016 SERSC

The key idea of MRShare is that sets of submitted jobs are transformed into groups

where each group is considered as a single job. Furthermore, the selection of each group

is solved as an optimization problem with the objective of maximizing the total savings.

More specifically, MRShare can process a group of jobs as a single job by applying

tagging process. For shared scans, map output tuples are tagged with respect to the

original individual jobs, then the multiple output files are written on the reduce side [7,

9, 25].

4.2 Relaxed MRShare

Although, MRShare is considered as the state-of-the-art work in multi-query

optimization MapReduce-based, there is a set of research works have been proposed to

extend MRShare. However, the proposed work in [9] has relaxed and generalized

MRShare is overlapping queries to increase sharing opportunities in a single job.

Compared with MRShare, they have introduced more comprehensive with additional

optimization techniques (i.e., Generalized Grouping Technique and Materialization

Technique). Indeed, MRShare’s grouping technique can only share map input of similar

jobs. Since it considers that the two jobs produce entirely different map output even there

is some sort of overlapping among these jobs. To illustrate the difference between

MRShare and relaxed MRShare techniques, consider the following example of two

jobs/queries [26]:

J1: select a, b, c from T where a ≤ 10

J2: select a, b, c from T where a ≥ 5

It may be noted that the map output of J2 for 5 ≤ a ≤ 10 can be reused to derive the

partial map output of J1. Therefore, MRShare’s grouping technique suffers from the

limitation of exploiting the sharing opportunities among multiple jobs. The relaxed

MRShare presents a more comprehensive study of multi-query/job optimization

techniques to share map input scan and map output and algorithms to choose an

evaluation plan for a batch of jobs in the MapReduce context [9, 26]. Therefore, the

relaxed MRShare concerns about multi-query optimization with respect to the aggregated

queries. The comparative study through this work focuses on predicate-based filtering to

show that the overlapping consideration among multi-query is also beneficial in case of

plain queries and can reduce redundant filtering tasks.

5. Predicate-Based Filters on Shared Data

In this section, the overview of predicate based filters which are applied to shared data

will be introduced followed by the used example of the comparative techniques.

5.1 Predicate-Based Filters

Ultimately, querying large data could produce some overheads, as I/O bottleneck and

network traffic. Therefore, the performance of the system would be degraded. So data

pruning is an important part of query processing which can drastically cut down the time

spent on analyzing data and then improves the system performance. On the other hands,

predicates filtering have been applied in the traditional database systems which can cause

significant cost saving for data-intensive applications. In more details, when predicates

with a high filter factor are processed, the unmatched rows are assessed and eliminated as

early as possible, which can reduce processing cost. Worthwhile, different types of filters

can be defined according to SQL language as; i) comparison operators such as logic

operations, ii) range filters such as between, and iii) exact matching such as specific value

and list values using exists, in, like, all, some and any. According to the context of this

International Journal of Grid and Distributed Computing

Vol.9, No.5 (2016)

Copyright ⓒ 2016 SERSC 235

paper, the predicate-based range filters are concerned. Therefore, these predicates can

also benefit from shared multi-query in the case of applying for only once.

The shared multi-query can be broadly classified into two categories; shared data and

shared computation. The multi-query optimization MapReduce-based on shared

computation has been explored in different research works [7, 9, 10, 12]. However, the

shared data which pruned by predicate-based filters can also benefit to exploit the sharing

opportunity. On the other hand, a predicate defines a logical condition being applied to

rows in a table. Regarding multi-query, the common predicate-based filters perform

redundant filtering-rows tasks against the large input files. Therefore, grouping these

predicate-based filters can avoid redundant and wasteful filtering tasks on the same input

files.

5.2 Example of Comparative Techniques

An illustrative example to clarify the difference between MRShare and relaxed

MRShare using a predicate-based filter is presented in this section. Eight queries are

considered to retrieve data from different input files (i.e., tables) as described in Table 2.

For simplicity, assumed that, the filters have ten distinct values ranged from 1 to 10.

Table 2. Example of Input Multi-Query

Query ID Query

Q1 Select a, b, c from T where 1 ≤ a ≤ 3

Q2 Select b, c, d from T where 4 ≤ b ≤ 6

Q3 Select a, b, c from t where 1 ≤ a ≤ 3

Q4 Select b, c, d from T where 4 ≤ b ≤ 6

Q5 Select a, e, f from R where 7 ≤ a ≤ 8

Q6 Select b, d from S where 8 ≤ b ≤ 9

Q7 Select b, d from T where 4 ≤ b ≤ 5

Q8 Select a, c from T where 2 ≤ a ≤ 3

Regarding the shared filters, the MRShare technique can merge both similar queries Q1

and Q3 in the same group, as well as, combine the similar queries Q2 and Q4 in another

group (see Figure 2). Each group will execute one job, which applies the same filter on

the same input file only once then produces the same output for both queries within the

one group. The reset queries are detected as non-shared by MRShare technique.

On the other hand, the relaxed MRShare technique can detect large sharing

opportunities by considering the overlapping among multi-query. Thus, the number of

shared queries within the same group is increased which can eliminate the redundant

scanning, as well as, filtering tasks. Therefore, the total multi-query optimization will be

improved by reducing the fraction of the total processing time which incurred without

overlapping considerations.

Again here, regarding the previous example, the relaxed MRShare can merge queries

Q1, Q3, and Q8 in the same group, and the queries Q2, Q4 and Q7 in another group (see

Figure 3). More specifically, the relaxed MRShare considers the overlapping between

Q1, Q3, and Q8 regarding their shared predicates filters such as 1 ≤ 2 ≤ 3. Similarly, the

same overlapping consideration is taken with respect to Q2, Q4, and Q7 regarding their

shared predicates filters such as 4 ≤ 5 ≤ 6. Finally, each group will execute one job, which

applies the same filter on the same input file only once, benefits from overlapping

International Journal of Grid and Distributed Computing

Vol.9, No.5 (2016)

236 Copyright ⓒ 2016 SERSC

predicted-based filter, then produces the desired output for all queries within the one

group. Conversely, Q5 and Q6 are querying on different input files, so each query will be

executed independently even the input multi-query are evaluated by MRShare or relaxed

MRShare technique.

Figure 2. MRShare Multi-Query Optimization Technique

Figure 3. Relaxed MRShare Multi-Query Optimization Technique

6. Analysis of the Comparative Techniques

In this section, the experimental evaluation of the comparative study is presented.

Starting by describing the experiment setup and used metrics.

6.1 Experiment Setup

The experiments have been performed using Hadoop version 2.6.0 on a cluster of 10

nodes configured with a 3 GB of RAM, 2 cores, and 200 GB disk and run Ubuntu Linux

12.04.2 LTS.

6.2 Datasets and Queries

The structured data is used through the experiments by generating different files size of

Star Schema Benchmark. Star schema is based on TPC-H benchmark, and it is designed

to measure the performance of database products that support data warehouse applications

[27]. Lineitem table is used and l_discount attribute values (i.e., range attribute is used as

Q3

Q1

Q6

Q5

Q2

Q4

Q7

Q8

Q3

Q1

Q6 Q5

Q2

Q4

Q7

Q8

International Journal of Grid and Distributed Computing

Vol.9, No.5 (2016)

Copyright ⓒ 2016 SERSC 237

the selection attribute which stores some disjoint of distinct values) for predicates within

filters. A set of synthetic queries are used which generated from the following query

template:

SELECT list of attributes FROM Lineitem WHERE a ≤ l_discount ≤ b

6.3 Performance Evaluation

In this sub section, the comparative study is evaluated by data size in terms of a

different number of tuples [28]. Two metrics is measured; execution time of queries

which means the elapsed time duration from query submission to query completion and

the reduction of filtered data. More specifically, the filtered data indicates the tuples

which could be filtered to answer the query. The multi-query execution plans that have

been evaluated and compared are (1) the MRShare plan and (2) the relaxed MRShare

plan. Moreover, the number of queries which used is 20 queries for all conducted

experiments.

6.3.1 Effect of Data Size

The performance as a function of data size will be examined in the following

experiments. Figure 4, 5, 6 and 7 depicts that the relaxed MRShare technique significantly

outperforms the MRShare technique for 100 million, 250 million, 500 million and 1

billion tuples respectively.

Furthermore, Figure 8 shows the performance improvement of the relaxed MRShare

technique with respect to MRShare technique that is 46%, 62%, 70% and 76% against

100 million 250 million, 500 million and 1 billion respectively. It depicts that the

performance improvement of the relaxed MRShare technique increases linearly with

respect to data size (i.e., the number of tuples). The reason behind the improvement of the

relaxed MRShare technique multi-query execution time is that the increasing of the data

sharing in terms of overlapping consideration, which in turn reduces the loading data from

HDFS, as well as, filtering operations compared to the loading and filtering of the

MRShare technique.

 Figure 4. The Execution Time of 100 Million Tuples

International Journal of Grid and Distributed Computing

Vol.9, No.5 (2016)

238 Copyright ⓒ 2016 SERSC

 Figure 5. The Execution Time of 250 Million Tuples

 Figure 6. The execution time of 500 million tuples

 Figure 7. The Execution Time of 1 Billion Tuples

International Journal of Grid and Distributed Computing

Vol.9, No.5 (2016)

Copyright ⓒ 2016 SERSC 239

Figure 8. Execution Time Improvement w.r.t. MRShare
Technique of 100, 250,500 Million and 1 Billion

6.3.2 Effect of Filtered Data: On the other hand, Figure 9 depicts the number of filtered

tuples for both the MRShare and the relaxed MRShare multi-query execution plan using

100 million, 250 million, 500 million and 1 billion tuples. It is noted that the relaxed

MRShare technique can reduce the number of filtered tuples significantly with respect to

MRShare technique. Also, the improvement of filtered tuples reduction in the relaxed

MRShare technique with respect MRShare technique is 75% which gained by overlapping

consideration.

Figure 9. Improvement of Filtered Tuples Reduction using 100, 250,
500 Million and 1 Billion Tuples for Ten Queries

7. Conclusions

The work in this paper aims to compare the sharing data opportunity to optimize multi-

query in Big Data environment. Two existed techniques are compared; the MRShare and

the relaxed MRShare using predicate-based filter among multi-query. The experimental

results show that the execution time of the relaxed MRShare technique is improved

comparing to the MRShare technique. Meanwhile, the performance of multi-query will be

enhanced by increasing data size and number of shared queries such as increasing a portion

of overlapping through multi-query. On the other hand, the reduction of filtered data of the

relaxed MRShare technique is improved with respect to MRShare technique. Therefore,

the comparative study using predicate-based filter proves that the exploiting of shared data

is also beneficial, as well as, the shared computation for multi-query optimization

MapReduce-based by reducing redundant filtering tasks.

International Journal of Grid and Distributed Computing

Vol.9, No.5 (2016)

240 Copyright ⓒ 2016 SERSC

References

[1] R. Akerkar, Big data computing: CRC Press, 2013.

[2] A. Gkoulalas-Divanis and A. Labbi, Large-Scale Data Analytics: Springer, 2014.

[3] R. Sahal, M. H. Khafagy, and F. A. Omara, "A Survey on SLA Management for Cloud Computing and

Cloud-Hosted Big Data Analytic Applications," International Journal of Database Theory and

Application, vol. 9, pp. 107-118, 2016.

[4] J. Dean and S. Ghemawat, "MapReduce: simplified data processing on large clusters," Communications

of the ACM, vol. 51, pp. 107-113, 2008.

[5] M. A. Bayir, I. H. Toroslu, and A. Cosar, "Genetic algorithm for the multiple-query optimization

problem," Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on,

vol. 37, pp. 147-153, 2007.

[6] J. F. García, "MQOP-A Tiny Reference to the Multiple-Query Optimization Problem," Revista de

Tecnología, vol. 7, 2008.

[7] T. Nykiel, M. Potamias, C. Mishra, G. Kollios, and N. Koudas, "MRShare: sharing across multiple

queries in MapReduce," Proceedings of the VLDB Endowment, vol. 3, pp. 494-505, 2010.

[8] I. Elghandour and A. Aboulnaga, "Restore: Reusing results of mapreduce jobs," Proceedings of the

VLDB Endowment, vol. 5, pp. 586-597, 2012.

[9] G. Wang and C.-Y. Chan, "Multi-query optimization in mapreduce framework," Proceedings of the

VLDB Endowment, vol. 7, pp. 145-156, 2013.

[10] T. Dokeroglu, S. Ozal, M. A. Bayir, M. S. Cinar, and A. Cosar, "Improving the performance of Hadoop

Hive by sharing scan and computation tasks," Journal of Cloud Computing, vol. 3, pp. 1-11, 2014.

[11] M. N. Abdullah, M. H. Khafagy, and F. A. Omara, "HOME: HiveQL Optimization in Multi-Session

Environment," in Proceedings of the 5th European Conference of Computer Science (ECCS14), 2014,

pp. PP. 80-89.

[12] J. LeFevre, J. Sankaranarayanan, H. Hacigumus, J. Tatemura, N. Polyzotis, and M. J. Carey,

"Opportunistic physical design for big data analytics," in Proceedings of the 2014 ACM SIGMOD

international conference on Management of data, 2014, pp. 851-862.

[13] H. Yao, J. Xu, Z. Luo, and D. Zeng, "MEMoMR: Accelerate MapReduce via reuse of intermediate

results," Concurrency and Computation: Practice and Experience, 2015.

[14] J. LeFevre, J. Sankaranarayanan, H. Hacigumus, J. Tatemura, N. Polyzotis, and M. J. Carey, "MISO:

souping up big data query processing with a multistore system," in Proceedings of the 2014 ACM

SIGMOD international conference on Management of data, 2014, pp. 1591-1602.

[15] J. Camacho-Rodríguez, D. Colazzo, M. Herschel, I. Manolescu, and S. R. Chowdhury, "Reuse-based

Optimization for Pig Latin," in BDA'2014: 30e journées Bases de Données Avancées, 2014.

[16] J. Grant and J. Minker, "On optimizing the evaluation of a set of expressions," International Journal of

Computer & Information Sciences, vol. 11, pp. 179-191, 1982.

[17] S. Finkelstein, "Common expression analysis in database applications," in Proceedings of the 1982 ACM

SIGMOD international conference on Management of data, 1982, pp. 235-245.

[18] T. K. Sellis, "Multiple-query optimization," ACM Transactions on Database Systems (TODS), vol. 13,

pp. 23-52, 1988.

[19] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H. Liu, P. Wyckoff, and R. Murthy,

"Hive: a warehousing solution over a map-reduce framework," Proceedings of the VLDB Endowment,

vol. 2, pp. 1626-1629, 2009.

[20] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, N. Zhang, S. Antony, H. Liu, and R. Murthy,

"Hive-a petabyte scale data warehouse using hadoop," in Data Engineering (ICDE), 2010 IEEE 26th

International Conference on, 2010, pp. 996-1005.

[21] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins, "Pig latin: a not-so-foreign language for

data processing," in Proceedings of the 2008 ACM SIGMOD international conference on Management of

data, 2008, pp. 1099-1110.

[22] E. Sarhan, A. Ghalwash, and M. Khafagy, "Queue weighting load-balancing technique for database

replication in dynamic content web sites," in Proceedings of the 9th WSEAS International Conference on

APPLIED COMPUTER SCIENCE, 2009, pp. 50-55.

[23] H. A. Hefny and M. H. Khafagy, "Comparative Study Load Balance Algorithms for Map Reduce

Environment," International Journal of Computer Applications, vol. 106, pp. 41-50, 2014.

[24] S. Wu, F. Li, S. Mehrotra, and B. C. Ooi, "Query optimization for massively parallel data processing," in

Proceedings of the 2nd ACM Symposium on Cloud Computing, 2011, p. 12.

[25] C. Doulkeridis and K. Nørvåg, "A survey of large-scale analytical query processing in MapReduce," The

VLDB Journal, vol. 23, pp. 355-380, 2014.

[26] W. Guoping, "Optimization Techniques for Complex Multi-query Applications," 2014.

[27] T. P. P. Council, "TPC-H benchmark specification," Published at http://www.tcp.org/hspec.htm, 2008.

[28] Y. Shi, "Finding Useful Information for Big Data," International Journal of Grid and Distributed

Computing, vol. 8, pp. 11-22, 2015.

