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Abstract 

Big data analytical systems, such as MapReduce, have become main issues for many 

enterprises and research groups. Currently, multi-query which translated into 

MapReduce jobs is submitted repeatedly with similar tasks. So, exploiting these similar 

tasks can offer possibilities to avoid repeated computations of MapReduce jobs. 

Therefore, many researches have addressed the sharing opportunity to optimize multi-

query processing.  Consequently, the main goal of this work is to study and compare 

comprehensively two existed sharing opportunity techniques using predicate-based 

filters; MRShare and relaxed MRShare.  The comparative study has been performed over 

TPC-H benchmark and confirmed that the relaxed MRShare technique significantly 

outperforms the MRShare for shared data in terms of predicate-based filters among 

multi-query. 

 

Keywords: Big data, MapReduce, Sharing Opportunity, Multi-Query Optimization, 

filter, predicates 

 

1. Introduction 

Big Data has been grown rapidly in many domains such as social networks and other 

information systems. The need for distributed computing is become an important issue 

due to the increasing of workstations power and the data sets sizes. The development and 

implementation of distributed system for Big Data applications are considered a challenge 

[1-3]. One of the popular frameworks that have emerged for Big Data processing is 

MapReduce. It was first introduced by Google in 2004 [4].  The main concept of 

MapReduce is to abstract the details of a large cluster of machines to facilitate the 

computation on large datasets.  

On the other hand, Multiple Query Optimization (MQO) problem has been introduced 

in the 1980s which considered as well-known database research problem [5]. It dominates 

in many business applications, artificial intelligent and many research areas in relational 

databases. Regarding single query in database optimization era, the query optimizer 

selects the cheaper costly execution plan (i.e., a method to get correctly exact answer for 

query) [6] . By extending the query to be multiple queries, the problem denotes as how to 

define  the optimal execution plan with a minimum cost which can answer all the entire 

queries and improve the overall time of execution plans. It aims to identify the shared 

common subexpressions (CSEs) among queries and exploit them to reduce the query 

evaluation cost [6]. 

Fundamentally, MapReduce system is one of the most popular parallel processing 

systems in Big Data. However, the parallel processing systems consume an enormous 
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amount of resources to process large data size.  The optimization of data processing 

systems especially redundant computation tasks can efficiently improve the performance, 

as well as, the resource utilization.  On the other words, sharing similar tasks can reduce 

the overall amount cost of computation, which can contribute to reducing incurred 

financial charges while utilizing the processing infrastructure [7].  Many applications 

often involve complex multiple shared queries which share a lot CSEs. Identifying and 

exploiting the CSEs to improve query performance is essential for these applications. 

Multi-query optimizations, which aims to detect and exploit the CSEs among queries in 

order to reduce the overall query evaluation cost, has been extensively studied for over 

two decades and demonstrated to be an effective technique in both Relational Database 

Management Systems  and MapReduce contexts [7-13].  

Principally, MRShare is considered the state-of-the-art for improving the performance 

of multi-query optimization using MapReduce [7]. On the other hand, the relaxed 

MRShare introduces more comprehensive with additional optimization techniques [9]. 

Both the MRShare and relaxed MRShare are proposed for computational aggregated 

multi-query optimization. However, the shared predicate-based filters for large-scale data 

analytics in MapReduce can also benefit to exploit the sharing. Consequently, the goal of 

this paper is to study and compare two existed works; the MRShare and relaxed MRShare 

techniques [7, 9]. The aim of this study is to investigate that not only the shared 

computation can gain optimization in Big Data environment, but also the multi-query 

optimization for shared data using predicate-based filters can open up new opportunities 

to gain significant improvement by reducing redundant filtering tasks.   

The rest of this paper is organized as follows. Related work is described in Section 2. 

The multi-query optimization in MapReduce is introduced in Section 3. The comparative 

techniques for multi-query optimization MapReduce based are described in Section 4.  

The predicate-based query filter concept with an illustrative example of comparative 

techniques are described Section 5.  The analysis of comparative techniques is presented 

in Section 6. Finally, conclusions are presented in Section 7. 

 

2. Related Work  

MapReduce is one of the most popular parallel processing platforms. There are several 

works have been done in query optimization MapReduce-based. One of the preliminary 

work concerns concurrent batch exaction queries MapReduce is  MRShare [7].  MRShare 

is a concurrent sharing framework. However, the  proposed work in [9] has relaxed and 

generalized  MRShare overlapping queries to increase the sharing opportunities in a 

single job. Moreover, they have proposed a novel cost-based two-phase approach to 

finding optimal evaluation plans. 

ReStore is  a non-concurrent sharing system built on top of  Pig [8]. It optimizes query 

evaluation using materialized results. According to  a space budget for storing 

materialized results, ReStore uses heuristics algorithm to choose the suitable materialized 

results even the complete or part of  the map and/or reduce the output of each job.  The 

materialized output which is produced by ReStore might not be reused at all if the query 

workloads are not repeated again. Thus, the concurrent shared queries need more 

investigation to overcome storing unused results.  

More recent works in [12, 14] consider reusing results stored by  exploiting 

MapReduce intermediate results for failure resilience reasons as materialized views. In 

particular, semantic UDF models based on Hive has been used to enable effectively reuse 

views where subsequent queries can be evaluated faster [12]. On the other side, a multi-

query optimization framework, SharedHive, is proposed to transform a set of correlated 

HiveQL into new optimized queries sets with respect to sharing scan and computation 

tasks [10].  Because Pig is considered the popular language within the data management 

in the parallel processing of large data volumes, reused-base optimization has been 
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addressed for Pig scripts [15]. According to the work in [15], PigReuse has been proposed 

to identify and reuse common subexpressions occurring in Pig Latin scripts and select the 

best ones to be merged based on a cost-based search process which is implemented with 

the help of a linear program solver.  

Indeed, both MRShare and relaxed MRShare are used to optimize aggregation queries. 

Regarding this paper, the MRShare and relaxed MRShare are chosen to compare the 

evaluation of the multi-query optimization for shared predicate-based filters which have a 

same key idea and applied for shared computation optimization.  

 

3. Multi-Query Optimization in MapReduce  

In this section, the overview of multi-query optimization will be introduced. Then, the 

MapReduce query processing will be described which is considered the backbone of the 

comparable techniques in this work.  In addition,   the general differences between multi-

query optimization in Database Management Systems (DBMS) and MapReduce will be 

discussed.  

 

3.1 Overview of Multi-Query Optimization 

Multiple Query Optimization (MQO) is a well-known problem in database research. It 

describes how to efficiently produce answers to a set of queries with common tasks. By 

given a set of queries, each query has a set of alternative execution plans and each plan 

has a set of tasks. MQO aims to choose an appropriate plan for each query and minimize 

the total execution time by performing common tasks only once [16, 17]. 

MQO is considered as an NP-Hard optimization problem where their algorithms such 

as heuristics and genetic algorithms are mostly approximate or produce near optimal 

solution. Since these solutions for MQO problem should find the set of plans that produce 

the answer of each query and included in the minimum cost global execution plan (i.e., a 

set of plans that answer every and each one of a set of queries) [6].  Whereas, many 

optimization solutions have been introduced to find the optimal plan  based on 

materialized results (i.e., intermediate results and final answer) which produced from 

earlier queries [17, 18]. Figure 1 depicts the three basic multi-query optimization 

techniques listed as follows: 

1) Naive technique; each query runs isolated from other queries. 

2) Grouping technique; only one instance of the query will be run for a set of identical 

queries.  

3) Materialization technique; when some queries materialized their results or part of 

their results to other queries. 
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Figure 1. Multi-Query Optimization Techniques 

3.2 MapReduce Query Processing   

Besides efficiency, MapReduce provides two simple user-friendly interfaces; map and 

reduce function. Furthermore,  MapReduce supports query processing by integrating with 

high-level declarative languages such as Hive [19, 20] and Pig [21]  to simplify 

application programming. These MapReduce-based query languages hide the 

implementation details (e.g., access methods, query plan optimization) and offer an SQL-

like interface for developers and Big Data analysts. However, the optimizer of 

MapReduce-based query languages suffers from the high cost of saving intermediate 

results. For more details, each MapReduce job is flushed back to HDFS as a backup for 

fault tolerance. The next MapReduce job reads the intermediate results of the previous job 

to continue processing. The HDFS I/O cost is significantly higher than local storage (i.e., 

there is Network cost) that use load balance [22, 23]. So, exploiting shared jobs can 

reduce intermediate results, and can be cheaper than generating too large size of 

intermediate results in the case of using an original data source for each query separately 

[24, 25]. 

3.3 Difference between Multi-Query Optimization on DBMS and Map Reduce  

There are several works have been done for optimizing query processing based on 

MapReduce jobs. Multi-query optimization MapReduce-based is significantly different 

from multi-query optimization in DBMS in the following three points; 1) MapReduce is 

based on a block operator, with all internal results of map phase required to be physically 

materialized to reduce phase; 2) Parallel scanning processing is the main MapReduce 

strategy and no pipeline is supported; and 3) Shuffling phase which concerns of data 

transferring between mappers and reducers [24]. Therefore, there are differences of multi-

query optimization solutions for pruning bad plans in DBMS and MapReduce which 

considered the popular processing analytical system in Big Data era. Table 1 identifies a 

brief of comparison between multi-query optimization in DBMS and multi-query 

optimization MapReduce-based with respect to two different optimization types; non-

concurrent optimization and concurrent optimization [25]. 
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Table 1. Comparison between Multi-Query Optimization in DBMS and                     
Map Reduce 

Optimization Type DBMS MapReduce 

Non-concurrent 

Use Materialized Views. 

Translates the input multi-query 

into jobs. 

Uses the output from past sub 

jobs such as map output, reduce 

input or combined with them. 

Matcher: matches all candidate 

views and the query optimizer 

select the best one to optimize 

the global plan. 

Matcher: searches in the 

previous executed sub-jobs or 

jobs that can be used to answer 

all or part of new jobs. 

Rewriter generates the new 

expression using the 

enumerated views to output the 

original query by adding 

operators, predicates, and 

indices. 

Rewriter rewrites the input 

jobs using the enumerated 

reused jobs outputs which 

stored previously. 

Concurrent 

Identifies the common 

subqueries and executes them 

only once. 

Identifies the sharing tasks or 

sub-jobs and grouping them for 

running only once. 

Due, the optimization in 

MapReduce had different 

optimization levels such as 

shared scan and shared 

shuffling, the concurrent 

optimization causes extra I/O 

cost for large file size especially 

in the case of low I/O speed 

Hadoop environment. 
 

4. Comparative Techniques of Multi-Query Optimization on 

MapReduce Environment  

The aim of the work in this paper is to compare the performance evaluation of the two  

existed techniques of multi-query optimization MapReduce-based for shared 

computation; MRShare and Relaxed MRShare. These two techniques will be discussed in 

details.  

 

4.1 MRShare 

MRShare is considered one of the preliminary work concerning concurrent batch 

execution  queries in MapReduce  [7].  MRShare is a concurrent sharing framework 

which can share portions of identical work to avoid redundant computation. It considers 

the following sharing opportunities: 

1) Sharing Scans; for the same map tasks against the same input file, the input data 

would be scanned only once.  

2) Sharing Map Outputs; for the key-values pairs of the same mapping tasks, only one 

sorted and transferred tasks would be performed. 

3) Sharing Map Functions; it is similar to multi-query optimization and avoids 

redundancy computation for a batch of queries executed at the same time. 
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The key idea of MRShare is that sets of submitted jobs are transformed into groups 

where each group is considered as a single job. Furthermore, the selection of each group 

is solved as an optimization problem with the objective of maximizing the total savings.  

More specifically, MRShare can process a group of jobs as a single job by applying 

tagging process. For shared scans, map output tuples are tagged with respect to the 

original individual  jobs, then the multiple output  files are written on the reduce side [7, 

9, 25]. 

 

4.2 Relaxed MRShare 

Although, MRShare is considered as the state-of-the-art work in multi-query 

optimization MapReduce-based, there is a set of research works have been proposed to 

extend MRShare. However, the  proposed work in [9] has relaxed and generalized  

MRShare is overlapping queries to increase sharing opportunities in  a single job.  

Compared with MRShare, they have introduced more comprehensive with additional 

optimization techniques (i.e., Generalized Grouping Technique and Materialization 

Technique). Indeed, MRShare’s grouping technique can only share map input of similar 

jobs. Since it considers that the two jobs produce entirely different map output even there 

is some sort of overlapping among these jobs. To illustrate the difference between 

MRShare and relaxed MRShare techniques, consider the following example of two 

jobs/queries [26]: 

 

J1: select a, b, c from T where a ≤ 10  

J2: select a, b, c from T where a ≥ 5  

It may be noted that the map output of J2 for 5 ≤ a ≤ 10 can be reused to derive the 

partial map output of J1. Therefore, MRShare’s grouping technique suffers from the 

limitation of exploiting the sharing opportunities among multiple jobs. The relaxed 

MRShare presents a more comprehensive study of multi-query/job optimization 

techniques to share map input scan and map output and algorithms to choose an 

evaluation plan for a batch of jobs in the MapReduce context [9, 26]. Therefore, the 

relaxed MRShare concerns about multi-query optimization with respect to the aggregated 

queries. The comparative study through this work focuses on predicate-based filtering to 

show that the overlapping consideration among multi-query is also beneficial in case of 

plain queries and can reduce redundant filtering tasks.   

 

5. Predicate-Based Filters on Shared Data 

In this section, the overview of predicate based filters which are applied to shared data 

will be introduced followed by the used example of the comparative techniques.  

 

5.1 Predicate-Based Filters 

Ultimately, querying large data could produce some overheads, as I/O bottleneck and 

network traffic. Therefore, the performance of the system would be degraded. So data 

pruning is an important part of query processing which can drastically cut down the time 

spent on analyzing data and then improves the system performance. On the other hands, 

predicates filtering have been applied in the traditional database systems which can cause 

significant cost saving for data-intensive applications. In more details, when predicates 

with a high filter factor are processed, the unmatched rows are assessed and eliminated as 

early as possible, which can reduce processing cost. Worthwhile, different types of filters 

can be defined according to SQL language as; i) comparison operators such as logic 

operations, ii) range filters such as between, and iii) exact matching such as specific value 

and list values using exists, in, like, all, some and any.  According to the context of this 
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paper, the predicate-based range filters are concerned.  Therefore, these predicates can 

also benefit from shared multi-query in the case of applying for only once. 

The shared multi-query can be broadly classified into two categories; shared data and 

shared computation. The multi-query optimization MapReduce-based on shared 

computation has been explored in different research works [7, 9, 10, 12]. However, the 

shared data which pruned by predicate-based filters can also benefit to exploit the sharing 

opportunity. On the other hand, a predicate defines a logical condition being applied to 

rows in a table. Regarding multi-query, the common predicate-based filters perform 

redundant filtering-rows tasks against the large input files. Therefore, grouping these 

predicate-based filters can avoid redundant and wasteful filtering tasks on the same input 

files. 

 

5.2 Example of Comparative Techniques  

An illustrative example to clarify the difference between MRShare and relaxed 

MRShare using a predicate-based filter is presented in this section. Eight queries are 

considered to retrieve data from different input files (i.e., tables) as described in  Table 2. 

For simplicity, assumed that, the filters have ten distinct values ranged from 1 to 10.  

Table 2. Example of Input Multi-Query 

Query ID Query 

Q1 Select a, b, c from T where 1 ≤ a ≤ 3 

Q2 Select b, c, d from T where 4 ≤ b ≤ 6 

Q3 Select a, b, c from t where 1 ≤ a ≤ 3 

Q4 Select b, c, d from T where 4 ≤ b ≤ 6 

Q5 Select a, e, f from R where 7 ≤ a ≤ 8 

Q6 Select b, d from S where 8 ≤ b ≤ 9 

Q7 Select b, d from T where 4 ≤ b ≤ 5 

Q8 Select a, c from T where 2 ≤ a ≤ 3 

 

Regarding the shared filters, the MRShare technique can merge both similar queries Q1 

and Q3 in the same group, as well as, combine the similar queries Q2 and Q4 in another 

group (see Figure 2). Each group will execute one job, which applies the same filter on 

the same input file only once then produces the same output for both queries within the 

one group. The reset queries are detected as non-shared by MRShare technique. 

On the other hand, the relaxed MRShare technique can detect large sharing 

opportunities by considering the overlapping among multi-query. Thus, the number of 

shared queries within the same group is increased which can eliminate the redundant 

scanning, as well as, filtering tasks. Therefore, the total multi-query optimization will be 

improved by reducing the fraction of the total processing time which incurred without 

overlapping considerations.  

Again here, regarding the previous example, the relaxed MRShare can merge queries 

Q1, Q3, and Q8 in the same group, and the queries Q2, Q4 and Q7 in another group (see 

Figure 3).   More specifically, the relaxed MRShare considers the overlapping between 

Q1, Q3, and Q8 regarding their shared predicates filters such as 1 ≤ 2 ≤ 3. Similarly, the 

same overlapping consideration is taken with respect to Q2, Q4, and Q7 regarding their 

shared predicates filters such as 4 ≤ 5 ≤ 6. Finally, each group will execute one job, which 

applies the same filter on the same input file only once, benefits from overlapping 
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predicted-based filter, then produces the desired output for all queries within the one 

group. Conversely, Q5 and Q6 are querying on different input files, so each query will be 

executed independently even the input multi-query are evaluated by MRShare or relaxed 

MRShare technique.     

 

 

 

Figure 2.  MRShare Multi-Query Optimization Technique 

 

Figure 3.  Relaxed MRShare Multi-Query Optimization Technique 

 

6. Analysis of the Comparative Techniques  

In this section, the experimental evaluation of the comparative study is presented. 

Starting by describing the experiment setup and used metrics.  

 

6.1 Experiment Setup 

The experiments have been performed using  Hadoop version 2.6.0 on a cluster of 10 

nodes configured with a 3 GB of RAM, 2 cores, and 200 GB disk and run Ubuntu Linux 

12.04.2 LTS.  

 

6.2 Datasets and Queries 

The structured data is used through the experiments by generating different files size of 

Star Schema Benchmark. Star schema is based on TPC-H benchmark, and it is designed 

to measure the performance of database products that support data warehouse applications 

[27]. Lineitem table is used and l_discount attribute values (i.e., range attribute is used as 
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the selection attribute which stores some disjoint of distinct values) for predicates within 

filters. A set of synthetic queries are used which generated from the following query 

template:  

 

SELECT list of attributes FROM Lineitem WHERE  a ≤ l_discount ≤ b 

 

6.3 Performance Evaluation 

In this sub section, the comparative study is evaluated by data size in terms of a 

different number of tuples [28]. Two metrics is measured; execution time of queries 

which means the elapsed time duration from query submission to query completion and 

the reduction of filtered data. More specifically, the filtered data indicates the tuples 

which could be filtered to answer the query. The multi-query execution plans that have 

been evaluated and compared are (1) the MRShare plan and (2) the relaxed MRShare 

plan. Moreover, the number of queries which used is 20 queries for all conducted 

experiments.   

 

6.3.1 Effect of Data Size  

The performance as a function of data size will be examined in the following 

experiments. Figure 4, 5, 6 and 7 depicts that the relaxed MRShare technique significantly 

outperforms the MRShare technique for 100 million, 250 million, 500 million and 1 

billion tuples respectively.  

Furthermore, Figure 8 shows the performance improvement of the relaxed MRShare 

technique with respect to MRShare technique that is 46%, 62%, 70% and 76% against 

100 million 250 million, 500 million and 1 billion respectively. It depicts that the 

performance improvement of the relaxed MRShare technique increases linearly with 

respect to data size (i.e., the number of tuples). The reason behind the improvement of the 

relaxed MRShare technique multi-query execution time is that the increasing of the data 

sharing in terms of overlapping consideration, which in turn reduces the loading data from 

HDFS, as well as, filtering operations compared to the loading and filtering of the 

MRShare technique. 

 

 

   Figure 4. The Execution Time of 100 Million Tuples 
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   Figure 5.  The Execution Time of 250 Million Tuples 

 

   Figure 6.  The execution time of 500 million tuples 

 

   Figure 7.  The Execution Time of 1 Billion Tuples 



International Journal of Grid and Distributed Computing 

Vol.9, No.5 (2016) 

 

 

Copyright ⓒ 2016 SERSC  239 

 

Figure 8.   Execution Time Improvement w.r.t.  MRShare                    
Technique of 100, 250,500 Million and 1 Billion 

6.3.2 Effect of Filtered Data: On the other hand, Figure 9 depicts the number of filtered 

tuples for both the MRShare and the relaxed MRShare multi-query execution plan using 

100 million, 250 million, 500 million and 1 billion tuples. It is noted that the relaxed 

MRShare technique can reduce the number of filtered tuples significantly with respect to 

MRShare technique. Also, the improvement of filtered tuples reduction in the relaxed 

MRShare technique with respect MRShare technique is 75% which gained by overlapping 

consideration. 

 

  

Figure 9.  Improvement of Filtered Tuples Reduction using 100, 250, 
500 Million and 1 Billion Tuples for Ten Queries 

7. Conclusions  

The work in this paper aims to compare the sharing data opportunity to optimize multi-

query in Big Data environment. Two existed techniques are compared; the MRShare and 

the relaxed MRShare using predicate-based filter among multi-query. The experimental 

results show that the execution time of the relaxed MRShare technique is improved 

comparing to the MRShare technique.  Meanwhile, the performance of multi-query will be 

enhanced by increasing data size and number of shared queries such as increasing a portion 

of overlapping through multi-query. On the other hand, the reduction of filtered data of the 

relaxed MRShare technique is improved with respect to MRShare technique. Therefore, 

the comparative study using predicate-based filter proves that the exploiting of shared data 

is also beneficial, as well as, the shared computation for multi-query optimization 

MapReduce-based by reducing redundant filtering tasks.  
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