Open Access

Nanoparticle interaction with the immune system / Interakcije nanodelcev z imunskim sistemom


Cite

1. Gartman A, Findlay AJ, Luther GW. Nanoparticulate pyrite and other nanoparticles are a widespread component of hydrothermal vent black smoker emissions. Chem Geol 2014;336:32-41. doi: 10.1016/j.chemgeo.2013.12.01310.1016/j.chemgeo.2013.12.013Search in Google Scholar

2. Wise JP, Goodale BC, Wise SS, Craig GA, Pongan AF, Walter RB, Thompson WD, Ng AK, Aboueissa AM, Mitani H, Spalding MJ, Mason MD. Silver nanospheres are cytotoxic and genotoxic to fish cells. Aquat Toxicol 2010;97:34-41. doi: 10.1016/j.aquatox.2009.11.01610.1016/j.aquatox.2009.11.016452615020060603Search in Google Scholar

3. Ngô C, Van de Voorde MH. Nanotechnology in a Nutshell: From Simple to Complex Systems. Paris: Atlantis Press; 2014.10.2991/978-94-6239-012-6Search in Google Scholar

4. Donaldson K, Poland CA, Schins RPF. Possible genotoxic mechanisms of nanoparticles: Criteria for improved test strategies. Nanotoxicology 2010;4:414-20. doi: 10.3109/17435390.2010.48275110.3109/17435390.2010.48275120925449Search in Google Scholar

5. Coradeghini R, Gioria S, Garcia CP, Nativo P, Franchini F, Gilliland D, Ponti J, Rossi F. Size-dependent toxicity and cell interaction mechanisms of gold nanoparticles on mouse fibroblasts. Toxicol Lett 2013;217:205-16. doi: 10.1016/j. toxlet.2012.11.022 Search in Google Scholar

6. Shang L, Nienhaus K, Nienhaus GU. Engineered nanoparticles interacting with cells: size matters. J Nanobiotechnol 2014;12:5. doi: 10.1186/1477-3155-12-510.1186/1477-3155-12-5392260124491160Search in Google Scholar

7. Toyooka T, Amano T, Ibuki Y. Titanium dioxide particles phos-phorylate histone H2AX independent of ROS production. Mutat Res 2012;742:84-91. doi: 10.1016/j. mrgentox.2011.12.015Search in Google Scholar

8. Ingle AP, Duran N, Rai M. Bioactivity, mechanism of action, and cytotoxicity of copper-based nanoparticles: a review. Appl Microbiol Biotechnol 2014;98:1001-9. doi: 10.1007/ s00253-013-5422-810.1007/s00253-013-5422-824305741Search in Google Scholar

9. Kroll A, Dierker C, Rommel C, Hahn D, Wohlleben W, Schulze-Isfort C, Göbbert C, Voetz M, Hardinghaus F, Schnekenburger J. Cytotoxicity screening of 23 engineered nanomaterials using a test matrix of ten cell lines and three different assays. Part Fibre Toxicol 2011;8:9. doi: 10.1186/1743-8977-8-910.1186/1743-8977-8-9305926721345205Search in Google Scholar

10. Lewinski N, Colvin V, Drezek R. Cytotoxicity of nanoparticles. Small 2008;4:26-49. doi: 10.1002/smll.20070059510.1002/smll.20070059518165959Search in Google Scholar

11. Przybytkowski E, Behrendt M, Dubois D, Maysinger D. Nanoparticles can induce changes in the intracellular metabolism of lipids without compromising cellular viability. FEBS J 2009;276:6204-17. doi: 10.1111/j.1742- 4658.2009. 07324.xSearch in Google Scholar

12. Saptarshi SR, Feltis BN, Wright PF, Lopata AL. Investigating the immunomodulatory nature of zinc oxide nanoparticles at sub-cytotoxic levels in vitro and after intranasal instillation in vivo. J Nanobiotechnol 2015;13:6. doi:10.1186/s12951-015-0067-710.1186/s12951-015-0067-7432466325645871Search in Google Scholar

13. Kawata K, Osawa M, Okabe S. In vitro toxicity of silver nanoparticles at noncytotoxic doses to HepG2 human hepatoma cells. Environ Sci Technol 2009;43:6046-51. doi: 10.1021/es900754q10.1021/es900754q19731716Search in Google Scholar

14. Dworak N, Wnuk M, Zebrowski J, Bartosz G, Lewinska A. Genotoxic and mutagenic activity of diamond nanoparticles in human peripheral lymphocytes in vitro. Carbon 2014;68:763-76 doi:10.1016/j.carbon.2013.11.06710.1016/j.carbon.2013.11.067Search in Google Scholar

15. Zolnik BS, González-Fernández A, Sadrieh N, Dobrovolskaia MA. Nanoparticles and the immune system. Endocrinology 2010;151:458-65. doi: 10.1210/en.2009-108210.1210/en.2009-1082281761420016026Search in Google Scholar

16. Klippstein R, Fernandez-Montesinos R, Castillo PM, Zaderenko AP, Pozo D. Silver nanoparticles interactions with the immune system: implications for health and disease. In: Pozo Perez D, editor. Silver nanoparticles. 1st ed. Rijeka: In TechOpen; 2010. p. 309-24.10.5772/8511Search in Google Scholar

17. Glaser R, Kiecolt-Glaser JK. Stress-induced immune dysfunction: implications for health. Nat Rev Immunol 2005;5:243-51. doi: 10.1038/nri157110.1038/nri157115738954Search in Google Scholar

18. Cupaioli FA, Zucca FA, Boraschi D, Zecca L. Engineered nanoparticles. How brain friendly is this new guest? Prog Neuroboil 2014;119-120:20-38. doi: 10.1016/j. pneurobio.2014.05.002Search in Google Scholar

19. Smith MJ, Brown JM, Zamboni WC, Walker NJ. From immunotoxicity to nanotherapy: the effects of nanomaterials on the immune system. Toxicol Sci 2014;138:249-55. doi: 10.1093/toxsci/kfu00510.1093/toxsci/kfu005398845124431216Search in Google Scholar

20. Dobrovolskaia MA, McNeil SE. Immunological properties of engineered nanomaterials. Nat Nanotechnol 2007;2:469-78. doi: 10.1038/nnano.2007.22310.1038/nnano.2007.22318654343Search in Google Scholar

21. Dwivedi PD, Misra A, Shanker R, Das M. Are nanomaterials a threat to the immune system? Nanotoxicology 2009;3:19-26. doi: 10.1080/1743539080260427610.1080/17435390802604276Search in Google Scholar

22. Lucarelli M, Gatti AM, Savarino G, Quattroni P, Martinelli L, Monari E, Boraschi D. Innate defence functions of macrophages can be biased by nano-sized ceramic and metallic particles. Eur Cytokine Netw 2004;15:339-46. PMID: 15627643Search in Google Scholar

23. Trickler WJ, Lantz SM, Murdock RC, Schrand AM, Robinson BL, Newport GD, Schlager JJ, Oldenburg SJ, Paule MG, Slikker W Jr, Hussain SM, Ali SF. Silver nanoparticle induced blood-brain barrier inflammation and increased permeability in primary rat brain microvessel endothelial cells. Toxicol Sci 2010;118:160-70. doi: 10.1093/toxsci/kfq24410.1093/toxsci/kfq24420713472Search in Google Scholar

24. Chuang HC, Chenc LC, Leic YC, Wuc KY, Fengb PH, Chengc TJ. Surface area as a dose metric for carbon black nanoparticles: A study of oxidative stress, DNA singlestrand breakage and inflammation in rats. Atmos Environ 2015;106:329-34. doi:10.1016/j.atmosenv.2015.02.01410.1016/j.atmosenv.2015.02.014Search in Google Scholar

25. Xia T, Kovochich M, Liong M, Mädler L, Gilbert B, Shi H, Yeh JI, Zink JI, Nel AE. Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2008;2:2121-34. doi: 10.1021/nn800511k10.1021/nn800511k395980019206459Search in Google Scholar

26. Park EJ, Kim H, Kim Y, Yi J, Choi K, Park K. Inflammatory responses may be induced by a single intratracheal instillation of iron nanoparticles in mice. Toxicology 2010;275:65-71. doi: 10.1016/j.tox.2010.06.00210.1016/j.tox.2010.06.00220540983Search in Google Scholar

27. Kaewamatawong T, Shimada A, Okajima M, Inoue H, Morita T, Inoue K, Takano H. Acute and subacute pulmonary toxicity of low dose of ultrafine colloidal silica particles in mice after intratracheal instillation. Toxicol Pathol 2006;34:958-65. doi: 10.1080/0192623060109455210.1080/0192623060109455217178696Search in Google Scholar

28. Nishimori H, Kondoh M, Isoda K, Tsunoda S, Tsutsumi Y, Yagi K. Silica nanoparticles as hepatotoxicants. Eur J Pharm Biopharm 2009;72:496-501. doi: 10.1016/j.ejpb.2009.02.00510.1016/j.ejpb.2009.02.00519232391Search in Google Scholar

29. Cho WS, Kim S, Han BS, Son WC, Jeong J. Comparison of gene expression profiles in mice liver following intravenous injection of 4 and 100 nm-sized PEG-coated gold nanoparticles. Toxicol Lett 2009;191:96-102. doi: 10.1016/j. toxlet.2009.08.010Search in Google Scholar

30. Shvedova AA, Kisin ER, Mercer R, Murray AR, Johnson VJ, Potapovich AI, Tyurina YY, Gorelik O, Arepalli S, Schwegler- Berry D, Hubbs AF, Antonini J, Evans DE, Ku BK, Ramsey D, Maynard A, Kagan VE, Castranova V, Baron P. Unusual inflammatory and fibrogenic pulmonary responses to singlewalled carbon nanotubes in mice. Am J Physiol Lung Cell Mol Physiol 2005;289:L698-708. doi: 10.1152/ ajplung.00084.200510.1152/ajplung.00084.200515951334Search in Google Scholar

31. Pulskamp K, Diabaté S, Krug HF. Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants. Toxicol Lett 2007;168:58-74. doi: 10.1016/j.toxlet.2006.11.00110.1016/j.toxlet.2006.11.00117141434Search in Google Scholar

32. Shvedova AA, Fabisiak JP, Kisin ER, Murray AR, Roberts JR, Tyurina YY, Antonini JM, Feng WH, Kommineni C, Reynolds J, Barchowsky A, Castranova V, Kagan VE. Sequential exposure to carbon nanotubes and bacteria enhances pulmonary inflammation and infectivity. Am J Respir Cell Mol Biol 2008;38:579-90. doi: 10.1165/ rcmb.2007-0255OC10.1165/rcmb.2007-0255OC233533818096873Search in Google Scholar

33. Andersen AJ, Robinson JT, Dai HJ, Hunter AC, Andresen TL, Moghimi SM. Single-walled carbon nanotube surface control of complement recognition and activation. ACS Nano 2013;7:1108-19. doi: 10.1021/nn3055175 10.1021/nn305517523301860Search in Google Scholar

34. Dykman LA, Sumaroka MV, Staroverov SA, Zaitseva IS, Bogatyrev VA. Immunogenic properties of the colloidal gold. Biol Bull 2004;31:75-9. doi: 10.1023/B:BIBU.0000014358. 98422.9cSearch in Google Scholar

35. Hamad I, Christy Hunter A, Rutt KJ, Liu Z, Dai H, Moein Moghimi S. Complement activation by PEGylated singlewalled carbon nanotubes is independent of C1q and alternative pathway turnover. Mol Immunol 2008;45:3797-803. doi: 10.1016/j.molimm.2008.05.02010.1016/j.molimm.2008.05.020282454018602161Search in Google Scholar

36. Pedersen MB, Zhou X, Larsen EK, Sorensen US, Kjems J, Nygaard JV, Nyengaard JR, Meyer RL, Boesen T, Vorup- Jensen T. Curvature of synthetic and natural surfaces is an important target feature in classical pathway complement activation. J Immunol 2010;184:1931-45. doi: 10.4049/ jimmunol.090221410.4049/jimmunol.090221420053940Search in Google Scholar

37. Pham CT, Mitchell LM, Huang JL, Lubniewski CM, Schall OF, Killgore JK, Pan D, Wickline SA, Lanza GM, Hourcade DE. Variable antibody-dependent activation of complement by functionalized phospholipid nanoparticle surfaces. J Biol Chem 2011;286:123-30. doi: 10.1074/jbc.M110.18076010.1074/jbc.M110.180760301296621047788Search in Google Scholar

38. Pondman KM, Sobik M, Nayak A, Tsolaki AG, Jäkel A, Flahaut E, Hampel S, Ten Haken B, Sim RB, Kishore U. Complement activation by carbon nanotubes and its influence on the phagocytosis and cytokine response by macrophages. Nanomedicine 2014;10:1287-99. doi: 10.1016/j. nano.2014.02.010Search in Google Scholar

39. Salvador-Morales C, Flahaut E, Sim E, Sloan J, Green ML, Sim RB. Complement activation and protein adsorption by carbon nanotubes. Mol Immunol 2006;43:193-201. doi: 10.1016/j.molimm.2005.02.00610.1016/j.molimm.2005.02.006Search in Google Scholar

40. Salvador-Morales C, Basiuk EV, Basiuk VA, Green ML, Sim RB. Effects of covalent functionalization on the biocompatibility characteristics of multi-walled carbon nanotubes. J Nanosci Nanotechnol 2008;8:2347-56. doi: 10.1166/jnn.2008.09010.1166/jnn.2008.090Search in Google Scholar

41. Dobrovolskaia MA, Neun BW, Man S, Ye X, Hansen M, Patri AK, Crist RM, McNeil SE. Protein corona composition does not accurately predict hematocompatibility of colloidal gold nanoparticles. Nanomedicine 2014;10:1453-63. doi: 10.1016/j.nano.2014.01.00910.1016/j.nano.2014.01.009Search in Google Scholar

42. Liu Y, Jiao F, Qiu Y, Li W, Qu Y, Tian C, Li Y, Bai R, Lao F, Zhao Y, Chai Z, Chen C. Immunostimulatory properties and enhanced TNF- alpha mediated cellular immunity for tumor therapy by C60(OH)20 nanoparticles. Nanotechnology 2009;20:415102. doi: 10.1088/0957-4484/20/41/41510210.1088/0957-4484/20/41/415102Search in Google Scholar

43. Chen BX, Wilson SR, Das N, Coughlin DJ, Erlanger BF. Antigenicity of fullerenes: Antibodies specific for fullerenes and their characteristics. Proc Natl Acad Sci USA 1998;95:10809-13. doi: 10.1073/pnas.95.18.1080910.1073/pnas.95.18.10809Search in Google Scholar

44. Andreev SM, Babakhin AA, Petrukhina AO, Romanova VS, Parnes ZN, Petrov RV. Immunogenic and allergenic properties of fulleren conjugates with aminoacids and proteins. Dokl Biochem 2000;370:4-7. PMID: 11977250Search in Google Scholar

45. Castignolles N, Morgeaux S, Gontier-Jallet C, Samain D, Betbeder D, Perrin P. A new family of carriers (biovectors) enhances the immunogenicity of rabies antigens. Vaccine 1996;14:1353-60. doi: 10.1016/S0264-410X(96)00043-610.1016/S0264-410X(96)00043-6Search in Google Scholar

46. de Haar C, Hassing I, Bol M, Bleumink R, Pieters R. Ultrafine but not fine particulate matter causes airway inflammation and allergic airway sensitization to co-administered antigen in mice. Clin Exp Allergy 2006;36:1469-79. doi: 10.1111/j.1365-2222.2006.02586.x10.1111/j.1365-2222.2006.02586.xSearch in Google Scholar

47. Niikura K, Matsunaga T, Suzuki T, Kobayashi S, Yamaguchi H, Orba Y, Kawaguchi A, Haegawa H, Kajino K, Ninomiya T, Ijiro K, Sawa H. Gold nanoparticles as a vaccine platform: Influence of size and shape on immunological responses in vitro and in vivo. ACS Nano 2013;7:3926-38. doi: 10.1021/ nn305700510.1021/nn3057005Search in Google Scholar

48. Rajananthanan P, Attard GS, Sheikh NA, Morrow WJ. Evaluation of novel aggregate structures as adjuvants: composition, toxicity studies and humoral responses. Vaccine 1999;17:715-30. doi: 10.1016/S0264-410X(98)00256-410.1016/S0264-410X(98)00256-4Search in Google Scholar

49. Stieneker F, Kreuter J, Löwer J. 1991. High antibody titres in mice with polymethylmethacrylate nanoparticles as adjuvant for HIV vaccines. AIDS 1991;5:431-5. doi: 10.1097/00002030-199104000-0001210.1097/00002030-199104000-000122059385Search in Google Scholar

50. Li X, Aldayel AM, Cui Z. Aluminum hydroxide nanoparticles show a stronger vaccine adjuvant activity than traditional aluminum hydroxide microparticles. J Control Release 2014;173:148-57. doi: 10.1016/j.jconrel.2013.10.03210.1016/j.jconrel.2013.10.032Search in Google Scholar

51. Sun B, Ji Z, Liao YP, Wang M, Wang X, Dong J, Chang CH, Li R, Zhang H, Nel AE, Xia T. Engineering an effective immune adjuvant by designed control of shape and crystallinity of aluminum oxyhydroxide nanoparticles. ACS Nano 2013;7:10834-49. doi: 10.1021/nn404211j10.1021/nn404211jSearch in Google Scholar

52. Cao Y, Ma Y, Zhang M, Wang H, Tu X, Shen H, Dai J, Guo H, Zhang Z. Ultrasmall graphene oxide supported gold nanoparticles as adjuvants improve humoral and cellular immunity in mice. Adv Funct Mater 2014;24:6963-71. doi: 10.1002/adfm.20140135810.1002/adfm.201401358Search in Google Scholar

53. Al-Humadi NH, Siegel PD, Lewis DM, Barger MW, Ma JY, Weissman DN, Ma JK. The effect of diesel exhaust particles (DEP) and carbon black (CB) on thiol changes in pulmonary ovalbumin allergic sensitized Brown Norway rats. Exp Lung Res 2002;28:333-49. doi: 10.1080/0190214029009197610.1080/01902140290091976Search in Google Scholar

54. Nel AE, Diaz-Sanchez D, Ng D, Hiura T, Saxon A. Enhancement of allergic inflammation by the interaction between diesel exhaust particles and the immune system. J Allergy Clin Immunol 1998; 102:539-54. doi: 10.1016/ S0091-6749(98)70269-610.1016/S0091-6749(98)70269-6Search in Google Scholar

55. Nygaard UC, Hansen JS, Samuelsen M, Alberg T, Marioara CD, Løvik M. Single-walled and multi-walled carbon nanotubes promote allergic immune responses in mice. Toxicol Sci 2009;109:113-23. doi: 10.1093/toxsci/kfp05710.1093/toxsci/kfp05719293371Search in Google Scholar

56. Ryan JJ, Bateman HR, Stover A, Gomez G, Norton SK, Zhao W, Schwartz LB, Lenk R, Kepley CL. Fullerene nanomaterials inhibit the allergic response. J Immunol 2007;179:665-72. PMID: 1757908910.4049/jimmunol.179.1.66517579089Search in Google Scholar

57. Chen EY, Garnica M, Wang YC, Mintz AJ, Chen CS, Chin WC. A mixture of anatase and rutile TiO2 nanoparticles induces histamine secretion in mast cells. Part Fibre Toxicol 2012;9:2. doi: 10.1186/1743-8977-9-210.1186/1743-8977-9-2327546122260553Search in Google Scholar

58. Katwa P, Wang X, Urankar RN, Podila R, Hilderbrand SC, Fick RB, Rao AM, Ke PC, Wingard CJ, Brown JM. A carbon nanotube toxicity paradigm driven by mast cells and the IL-33/ST2 axis. Small 2012;8:2904-12. doi: 10.1002/ smll.20120087310.1002/smll.201200873344572622777948Search in Google Scholar

59. Murray AR, Kisin E, Leonard SS, Young SH, Kommineni C, Kagan VE, Castranova V, Shvedova AA. Oxidative stress and inflammatory response in dermal toxicity of singlewalled carbon nanotubes. Toxicology 2009;257:161-71. doi: 10.1016/j.tox.2008.12.02310.1016/j.tox.2008.12.02319150385Search in Google Scholar

60. Shannahan JH, Kodavanti UP, Brown JM. Manufactured and airborne nanoparticle cardiopulmonary interactions: A review of mechanisms and the possible contribution of mast cells. Inhal Toxicol 2012;24: 320-39. doi: 10.3109/08958378.2012.66822910.3109/08958378.2012.668229376826622486349Search in Google Scholar

61. Wang X, Katwa P, Podila R, Chen P, Ke PC, Rao AM, Walters DM, Wingard CJ, Brown JM. Multi-walled carbon nanotube instillation impairs pulmonary function in C57BL/6 mice. Part Fibre Toxicol 2011;8:24. doi: 10.1186/1743-8977-8-2410.1186/1743-8977-8-24317018821851604Search in Google Scholar

62. Azzi J, Tang L, Moore R, Tong R, Haddad NE, Akiyoshi T, Mfarrej B, Yang S, Jurewicz M, Ichimura T, Lindeman N, Cheng J, Abdi R. Polylactide-cyclosporin A nanoparticles for targeted immunosuppression. FASEB J 2010;24:3927-38. doi: 10.1096/fj.10-15469010.1096/fj.10-154690299691920547662Search in Google Scholar

63. Higaki M, Ishihara T, Izumo N, Takatsu M, Mizushima Y. Treatment of experimental arthritis with poly(D, L-lactic/ glycolic acid) nanoparticles encapsulating betamethasone sodium phosphate. Ann Rheum Dis 2005;64:1132-6. doi: 10.1136/ard.2004.03075910.1136/ard.2004.030759175560615695536Search in Google Scholar

64. Xu W, Ling P, Zhang T. Toward immunosuppressive effects on liver transplantation in rat model: tacrolimus loaded poly(ethylene glycol)-poly(D,L-lactide) nanoparticle with longer survival time. Int J Pharm 2014;460:173-80. doi: 10.1016/j.ijpharm.2013.10.03510.1016/j.ijpharm.2013.10.03524172796Search in Google Scholar

65. Shen CC, Wang CC, Liao MH, Jan TR. A single exposure to iron oxide nanoparticles attenuates antigen-specific antibody production and T-cell reactivity in ovalbumin-sensitized BALB/c mice. Int J Nanomedicine 2011;6:1229-35. doi: 10.2147/IJN.S2101910.2147/IJN.S21019313118921753874Search in Google Scholar

66. Mitchell LA, Gao J, Wal RV, Gigliotti A, Burchiel SW, McDonald JD. Pulmonary and systemic immune response to inhaled multiwalled carbon nanotubes. Toxicol Sci 2007;100:203-14. doi: 10.1093/toxsci/kfm19610.1093/toxsci/kfm19617660506Search in Google Scholar

67. Mitchell LA, Lauer FT, Burchiel SW, McDonald JD. Mechanisms for how inhaled multiwalled carbon nanotubes suppress systemic immune function in mice. Nat Nanotechnol 2009;4:451-6. doi: 10.1038/NNANO.2009.15110.1038/nnano.2009.151364118019581899Search in Google Scholar

68. Hirst SM, Peairs AD, Gogal R, Seal S, Reilly CM. Cerium oxide nanoparticles decrease inflammation in J774 cells. FASEB J 2008;22(Meeting Abstracts):758.2.10.1096/fasebj.22.1_supplement.758.2Search in Google Scholar

69. Shaunak S, Thomas S, Gianasi E, Godwin A, Jones E, Teo I, Mireskandari K, Luthert P, Duncan R, Patterson S, Khaw P, Brocchini S. Polyvalent dendrimer glucosamine conjugates prevent scar tissue formation. Nat Biotechnol 2004;22:977-84. doi: 10.1038/nbt99510.1038/nbt99515258595Search in Google Scholar

70. John AE, Lukacs NW, Berlin AA, Palecanda A, Bargatze RF, Stoolman LM, Nagy JO. Discovery of a potent nanoparticle P-selectin antagonist with anti-inflammatory effects in allergic airway disease. FASEB J 2003;17:2296-8. doi: 10.1096/fj.03-0166fje10.1096/fj.03-0166fje283990014563683Search in Google Scholar

71. Magdolenova Z, Collins A, Kumar A, Dhawan A, Stone V, Dusinska M. Mechanisms of genotoxicity. A review of in vitro and in vivo studies with engineered nanoparticles. Nanotoxicology 2014; 8: 233-78. doi: 10.3109/17435390.2013.77346410.3109/17435390.2013.77346423379603Search in Google Scholar

72. Warheit DB. How meaningful are the results of nanotoxicity studies in the absence of adequate material characterization? Toxicol Sci 2008:101;183-5. doi: 10.1093/toxsci/kfm27910.1093/toxsci/kfm27918300382Search in Google Scholar

73. Brun NR, Lenz M, Wehrli B, Fent K. Comparative effects of zinc oxide nanoparticles and dissolved zinc on zebrafish embryos and eleuthero-embryos: importance of zinc ions. Sci Total Environ 2014;476-477:657-66. doi: 10.1016/j. scitotenv.2014.01.053Search in Google Scholar

74. Brunner TJ, Wick P, Manser P, Spohn P, Grass RN, Limbach LK, Bruinink A, Stark WJ. In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica, and the effect of particle solubility. Environ Sci Technol 2006;40:4374-81. doi: 10.1021/es052069i10.1021/es052069i16903273Search in Google Scholar

75. Lin W, Xu Y, Huang CC, Ma Y, Shannon KB, Chen DR, Huang YW. Toxicity of nano- and micro-sized ZnO particles in human lung epithelial cells. J Nanopart Res 2009;11:25-39. doi: 10.1007/s11051-008-9419-710.1007/s11051-008-9419-7Search in Google Scholar

76. Petrarca C, Perrone A, Verna N, Verginelli F, Ponti J, Sabbioni E, Di Giampaolo L, Dadorante V, Schiavone C, Boscolo P, Mariani Costantini R, Di Gioacchino M. Cobalt nanoparticles modulate cytokine in vitro release by human mononuclear cells mimicking autoimmune disease. Int J Immunopathol Pharmacol 2006;19(4 Suppl):11-4. PMID: 17291400Search in Google Scholar

77. Reale M, Vianale G, Lotti LV, Mariani-Costantini R, Perconti S, Cristaudo A, Leopold K, Antonucci A, Di Giampaolo L, Iavicoli I, Di Gioacchino M, Boscolo P. Effects of palladium nanoparticles on the cytokine release from peripheral blood mononuclear cells of palladium-sensitized women. J Occup Environ Med 2011;53:1054-60. doi: 10.1097/ JOM.0b013e318228115e10.1097/JOM.0b013e318228115e21866053Search in Google Scholar

78. Ariano P, Zamburlin P, Gilardino A, Mortera R, Onida B, Tomatis M, Ghiazza M, Fubini B, Lovisolo D. Interaction of spherical silica nanoparticles with neuronal cells: sizedependent toxicity and perturbation of calcium homeostasis. Small 2011;7:766-74. doi: 10.1002/smll.20100228710.1002/smll.20100228721302356Search in Google Scholar

79. Fifis T, Gamvrellis A, Crimeen-Irwin B, Pietersz GA, Li J, Mottram PL, McKenzie IF, Plebanski M. Size-dependent immunogenicity: therapeutic and protective properties of nano-vaccines against tumors. J Immunol 2004;173:3148-54. doi: 10.4049/jimmunol.173.5.314810.4049/jimmunol.173.5.314815322175Search in Google Scholar

80. Inoue K, Takano H, Yanagisawa R, Koike E, Shimada A. Size effects of latex nanomaterials on lung inflammation in mice. Toxicol Appl Pharmacol 2009;234:68-76. doi: 10.1016/j.taap.2008.09.01210.1016/j.taap.2008.09.01218938192Search in Google Scholar

81. Mottram PL, Leong D, Crimeen-Irwin B, Gloster S, Xiang SD, Meanger J, Ghildyal R, Vardaxis N, Plebanski M. Type 1 and 2 immunity following vaccination is influenced by nanoparticle size: formulation of a model vaccine for respiratory syncytial virus. Mol Pharm 2007;4:73-84. doi: 10.1021/mp060096p10.1021/mp060096p17274665Search in Google Scholar

82. Pan Y, Neuss S, Leifert A, Fischler M, Wen F, Simon U, Schmid G, Brandau W, Jahnen-Dechent W. Size-dependent cytotoxicity of gold nanoparticles. Small 2007;3:1941-9. doi: 10.1002/smll.20070037810.1002/smll.200700378Search in Google Scholar

83. Schöler N, Hahn H, Müller RH, Liesenfeld O. Effect of lipid matrix and size of solid lipid nanoparticles (SLN) on the viability and cytokine production of macrophages. Int J Pharm 2002;231:167-76. doi: 10.1016/S0378-5173(01)00882-110.1016/S0378-5173(01)00882-1Search in Google Scholar

84. Yang H, Liu C, Yang D, Zhang H, Xi Z. Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: the role of particle size, shape and composition. J Appl Toxicol 2009;29:69-78. doi: 10.1002/jat.138510.1002/jat.1385Search in Google Scholar

85. Radomski A, Jurasz P, Alonso-Escolano D, Drews M, Morandi M, Malinski T, Radomski MW. Nanoparticleinduced platelet aggregation and vascular thrombosis. Br J Pharmacol 2005;146:882-93. doi: 10.1038/sj.bjp.0706386 10.1038/sj.bjp.0706386Search in Google Scholar

86. Ahamed M, Karns M, Goodson M, Rowe J, Hussain SM, Schlager JJ, Hong Y. DNA damage response to different surface chemistry of silver nanoparticles in mammalian cells. Toxicol Appl Pharmacol 2008;233:404-10. doi: 10.1016/j. taap.2008.09.015Search in Google Scholar

87. Lee WM, An YJ,Yoon H, Kweon HS. Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (Triticum aestivum): plant agar test for water-insoluble nanoparticles. Environ Toxicol Chem 2008;27:1915-21. doi: 10.1897/07-481.110.1897/07-481.1Search in Google Scholar

88. Schöler N, Olbrich C, Tabatt K, Müller RH, Hahn H, Liesenfeld O. Surfactant, but not the size of solid lipid nanoparticles (SLN) influences viability and cytokine production of macrophages. Int J Pharm 2001;221:57-67. PMID: 1139756710.1016/S0378-5173(01)00660-3Search in Google Scholar

89. Vallhov H, Qin J, Johansson SM, Ahlborg N, Muhammed MA, Scheynius A, Gabrielsson S. The importance of an endotoxin-free environment during the production of nanoparticles used in medical applications. Nano Lett 2006;6:1682-6. doi: 10.1021/nl060860z10.1021/nl060860z16895356Search in Google Scholar

90. Fedeli C, Segat D, Tavano R, De Franceschi G, de Laureto PP, Lubian E, Selvestrel F, Mancin F, Papini E. Variations of the corona HDL:albumin ratio determine distinct effects of amorphous SiO2 nanoparticles on monocytes and macrophages in serum. Nanomedicine (Lond) 2014; 9:2481-97. PMID: 2466125810.2217/nnm.14.2224661258Search in Google Scholar

91. Tenzer S, Docter D, Kuharev J, Musyanovych A, Fetz V, Hecht R, Schlenk F, Fischer D, Kiouptsi K, Reinhardt C, Landfester K, Schild H, Maskos M, Knauer SK, Stauber RH. Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nat Nanotechnol 2013;8:772-81. doi: 10.1038/nnano.2013.18110.1038/nnano.2013.18124056901Search in Google Scholar

92. Wang F, Yu L, Monopoli MP, Sandin P, Mahon E, Salvati A, Dawson KA. The biomolecular corona is retained during nanoparticle uptake and protects the cells from the damage induced by cationic nanoparticles until degraded in the lysosomes. Nanomedicine 2013;9:1159-68. doi: 10.1016/j. nano.2013.04.010Search in Google Scholar

93. Gref R, Minamitake Y, Peracchia MT, Trubetskoy V, Torchilin V, Langer R. Biodegradable long-circulating polymeric nanospheres. Science 1994;263:1600-3. doi: 10.1126/ science.812824510.1126/science.81282458128245Search in Google Scholar

94. Costantini LM, Gilberti RM, Knecht DA. The phagocytosis and toxicity of amorphous silica. PLoS One 2011;6:e14647. doi: 10.1371/journal.pone.001464710.1371/journal.pone.0014647Search in Google Scholar

95. Dujmović IH. Comparison of two guidelines on immunotoxicity testing of medicinal products. Arh Hig Rada Toksikol 2005;56:265-8. PMID: 16180612Search in Google Scholar

96. Kawabata TT, Evans EW. Development of immunotoxicity testing strategies for immunomodulatory drugs. Toxicol Pathol 2012;40:288-93. doi: 10.1177/019262331143023810.1177/0192623311430238Search in Google Scholar

97. Lankveld DP, Van Loveren H, Baken KA, Vandebriel RJ. In vitro testing for direct immunotoxicity: state of the art. Methods Mol Biol 2010;598:401-23. doi: 10.1007/978-1-60761-401-2_2610.1007/978-1-60761-401-2_26Search in Google Scholar

98. Luebke R. Immunotoxicant screening and prioritization in the twenty-first century. Toxicol Pathol 2012;40:294-9. doi: 10.1177/019262331142757210.1177/0192623311427572Search in Google Scholar

99. Luster MI, Portier C, Pait DG, White KL Jr, Gennings C, Munson AE, Rosenthal GJ. Risk assessment in immunotoxicology. I. Sensitivity and predictability of immune tests. Fundam Appl Toxicol 1992;18:200-10. doi: 10.1016/0272-0590(92)90047-L10.1016/0272-0590(92)90047-LSearch in Google Scholar

100. Ong KJ, MacCormack TJ, Clark RJ, Ede JD, Ortega VA, Felix LC, Dang MKM, Ma G, Fenniri H, Veinot JGC, Goss GG. Widespread nanoparticle-assay interference: implications for nanotoxicity testing. PLoS ONE 2014;9:e90650. doi: 10.1371/journal.pone.009065010.1371/journal.pone.0090650394972824618833Search in Google Scholar

101. Wörle-Knirsch JM, Pulskamp K, Krug HF. Oops they did it again! Carbon nanotubes hoax scientists in viability assays. Nano Lett 2006;6:1261-8. doi: 10.1021/nl060177c10.1021/nl060177c16771591Search in Google Scholar

102. Oostingh GJ, Casals E, Italiani P, Colognato R, Stritzinger R, Ponti J, Pfaller T, Kohl Y, Ooms D, Favilli F, Leppens H, Lucchesi D, Rossi F, Nelissen I, Thielecke H, Puntes VF, Duschl A, Boraschi D. Problems and challenges in the development and validation of human cell-based assays to determine nanoparticle-induced immunomo dulatory effects. Part Fibre Toxicol 2011;8:8. doi: 10.1186/1743-8977-8-810.1186/1743-8977-8-8304534021306632Search in Google Scholar

103. Kroll A, Pillukat MH, Hahn D, Schnekenburger J. Interference of engineered nanoparticles with in vitro toxicity assays. Arch Toxicol 2012;86:1123-36. doi: 10.1007/s00204-012-0837-z10.1007/s00204-012-0837-z22407301Search in Google Scholar

104. Rajapakse K, Drobne D, Kastelec D, Marinsek-Logar R. Experimental evidence of false-positive Comet test results due to TiO2 particle-assay interactions. Nanotoxicology 2013;7:1043-51. doi: 10.3109/17435390.2012.69673510.3109/17435390.2012.69673522632608Search in Google Scholar

105. Dobrovolskaia MA, Aggarwal P, Hall JB, McNeil SE. Preclinical studies to understand nanoparticle interaction with the immune system and its potential effects on nanoparticle biodistribution. Mol Pharm 2008;5:487-95. doi: 10.1021/mp800032f10.1021/mp800032f261357218510338Search in Google Scholar

106. Dobrovolskaia MA, Germolec DR, Weaver JL. Evaluation of nanoparticle immunotoxicity. Nat Nanotechnol 2009;4:411-4. doi: 10.1038/nnano.2009.17510.1038/nnano.2009.17519581891Search in Google Scholar

107. Dobrovolskaia MA, McNeil SE. Understanding the correlation between in vitro and in vivo immunotoxicity tests for nanomedicines. J Control Release 2013;172:456-66. doi: 10.1016/j.jconrel.2013.05.02510.1016/j.jconrel.2013.05.025583114923742883Search in Google Scholar

108. Mendoza A, Torres-Hernandez JA, Ault JG, Pedersen-Lane JH, Gao D, Lawrence DA. Silica nanoparticles induce oxidative stress and inflammation of human peripheral blood mononuclear cells. Cell Stress Chaperones 2014;19:777-90. doi: 10.1007/s12192-014-0502-y10.1007/s12192-014-0502-y438983824535706Search in Google Scholar

109. Capasso L, Camatini M, Gualtieri M. Nickel oxide nanoparticles induce inflammation and genotoxic effect in lung epithelial cells. Toxicol Lett 2014;226:28-34. doi: 10.1016/j.toxlet.2014.01.04010.1016/j.toxlet.2014.01.04024503009Search in Google Scholar

110. Yen HJ, Hsu SH, Tsai CL. Cytotoxicity and immunological response of gold and silver nanoparticles of different sizes. Small 2009;5:1553-61. doi: 10.1002/smll.20090012610.1002/smll.20090012619326357Search in Google Scholar

111. Nemmar A, Albarwani S, Beegam S, Yuvaraju P, Yasin J, Attoub S, Ali BH. Amorphous silica nanoparticles impair vascular homeostasis and induce systemic inflammation. Int J Nanomedicine 2014;9:2779-89. doi: 10.2147/IJN.S5281810.2147/IJN.S52818404798224936130Search in Google Scholar

112. Chou CC, Hsiao HY, Hong QS, Chen CH, Peng YW, Chen HW, Yang PC. Single-walled carbon nanotubes can induce pulmonary injury in mouse model. Nano Lett 2008;8:437-45. doi: 10.1021/nl072363410.1021/nl072363418225938Search in Google Scholar

113. Nemmar A, Melghit K, Ali BH. The acute proinflammatory and prothrombotic effects of pulmonary exposure to rutile TiO2 nanorods in rats. Exp Biol Med (Maywood) 2008;233:610-9. doi: 10.3181/0706-RM-165 10.3181/0706-RM-16518375825Search in Google Scholar

114. Seiffert J, Hussain F, Guo C, Chang Y, Zhang J, Smith R, Tetley T, Chung F. Inhaled silver nanoparticles induce pulmonary oxidative injury and inflammation: Differential effects between rat strains. Eur Respir J 2014;44(Suppl 58):P3939.Search in Google Scholar

115. Braakhuis HM, Gosens I, Krystek P, Boere J, Cassee FR, Fokkens P, Post J, van Loveren H, Park M. Particle size dependent deposition and pulmonary inflammation after short-term inhalation of silver nanoparticles. Part Fibre Toxicol 2014;11:49. doi: 10.1186/s12989-014-0049-110.1186/s12989-014-0049-1441079625227272Search in Google Scholar

116. Yanagisawa R, Takano H, Inoue K, Koike E, Kamachi T, Sadakane K, Ichinose T. Titanium dioxide nanoparticles aggravate atopic dermatitis-like skin lesions in NC/Nga mice. Exp Biol Med (Maywood) 2009;234:314-22. doi: 10.3181/0810-RM-30410.3181/0810-RM-30419144875Search in Google Scholar

117. Hirai T, Yoshioka Y, Ichihashi K, Mori T, Nishijima N, Handa T, Takahashi H, Tsunoda S, Higashisaka K, Tsutsumi Y. Silver nanoparticles induce silver nanoparticle-specific allergic responses. J Immunol 2014;192(Suppl 1):118.19.Search in Google Scholar

118. Ilves M, Palomäki J, Vippola M, Lehto M, Savolainen K, Savinko T, Alenius H. Topically applied ZnO nanoparticles suppress allergen induced skin inflammation but induce vigorous IgE production in the atopic dermatitis mouse model. Part Fibre Toxicol 2014;11:38. doi: 10.1186/s12989-014-0038-410.1186/s12989-014-0038-4423796625123235Search in Google Scholar

119. Herzog E, Byrne HJ, Casey A, Davoren M, Lenz AG, Maier KL, Duschl A, Oostingh GJ. SWCNT suppress inflammatory mediator responses in human lung epithelium in vitro. Toxicol Appl Pharmacol 2009;234:378-90. doi: 10.1016/j. taap.2008.10.015 Search in Google Scholar

eISSN:
0004-1254
Languages:
English, Slovenian
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Basic Medical Science, other