Acessibilidade / Reportar erro

Salinity and temperature effects on the growth and chlorophyll-α content of some planktonic aigae

Abstracts

The effect of salinity (0-40 %o) and temperature (11-36ºC, at 5ºC intervals) variations on maximum growth rate (div d-1), maximum yield (logio cell number) and chlorophyll-α content (pg cell-1) of four planktonic algae was examined under laboratory conditions. Phaeodactylum tricornutum grew over the entire range of experimental salinities, at 11-26 ºC. The highest maximum growth rates ( 1.6 div d-1) occurred between 9-30 %o and 16-26 ºC. Optimum salinity range for maximum yield (7.0) was found at 9-35 %c, under 16 ºC. Tetraselmis gracilis reproduced from 4 to 40 %o at 11-31 ºC, with the highest values of maximum growth rate ( 1.6 div d-1) and maximum yield (6.1) occurring at salinities between 14-40 %o at 11-21 ºC and 11-16 ºC, respectively. Minutocellus polymorphic and Chaetoceros sp grew between 9-40 %o and 11-31 ºC. Their highest maximum growth rates (2.1 and 2.6 div d-1, respectively) were found at 31ºC, between 20-35 %o and 20-40 %o, respectively. The highest maximum yields for AT. polymorphic (7.2) were recorded between 16-21 ºC at 20-40 %o and for Chaetoceros sp (6.8), between 25-40 %o at 16-31ºC. Chlorophyll-a content per cell was not conspicuously associated to temperature and salinity for the four species. At low salinity extremes, when cell division was inhibited, an increase in the amount of chlorophyll-a per cell was detected.

Biossays; Phytoplankton; Salinity effects; Temperature effects; Growth; Chlorophyll; Phaeodactylum tricornutum; Tetraselmis gracilis; Chaetoceros sp; Minutocellus polymorphic


Estudou-se o efeito de variações de salinidade (0-40 %o) e temperatura (11-36ºC, em intervalos de 5ºC) sobre a taxa máxima de crescimento (div d-1), o rendimento máximo (logio nº cel ml"¹) e o conteúdo de clorofíla-a (pg cel-1) de quatro espécies de algas planctónicas, sob condições de laboratório. Phaeodactylum tricornutum cresceu em toda a amplitude de salinidade experimental e entre 11-26ºC. As mais altas taxas de crescimento (1.6 div d-1) foram obtidas entre 9-30 %o e 16-26ºC. O ótimo de salinidade para o rendimento máximo (7.0) foi observado entre 9- 35%o, à 16ºC. Tetraselmis gracilis se reproduziu nas salinidades de 4 a 40 o e nas temperaturas de 11 a 31ºC, com os mais altos valores de taxas máximas de crescimento (1.6 div d-1) e rendimento máximo (6.1), ocorrendo entre 14-40 %o, nas temperaturas entre 11-21ºC e 11-16ºC, respectivamente. Minutocellus polymorphic e Chaetoceros sp cresceram entre 9-40 %o e 11-31 ºC. Os valores mais altos para as taxas máximas de crescimento (2.1 e 2.6 div d-1, respectivamente) foram obtidos à 31 ºC, entre 20-35 %o e 20-40%o, respectivamente. Os máximos rendimentos para M polymorphic (7.2) foram observados entre 16-21 ºC e 20-40%o< e para Chaetoceros sp (6.8), entre 25-40 %o e 16-31 ºC. Nas quatro espécies estudadas, o conteúdo de clorofíla-a por célula não se associou claramente às variações de temperatura e salinidade. Nos extremos baixos de salinidade, em que a divisão celular foi inibida, verificou-se um aumento da concentração celular de clorofila-a.

Bioensaios; Fitoplâncton; Efeitos da salinidade; Efeitos da temperatura; Crescimento; Clorofila; Phaeodactylum tricornutum; Tetraselmis gracilis; Chaetoceros sp; Minutocellus polymorphus


ARTIGOS

Salinity and temperature effects on the growth and chlorophyll-α content of some planktonic aigae

Teresa Cristina Siqueira Sigaud; Elizabeth Aidar

Instituto Oceanográfico da Universidade de São Paulo (Caixa Postal 9075, 01065-970 São Paulo, SP, Brasil)

ABSTRACT

The effect of salinity (0-40 %o) and temperature (11-36ºC, at 5ºC intervals) variations on maximum growth rate (div d-1), maximum yield (logio cell number) and chlorophyll-α content (pg cell-1) of four planktonic algae was examined under laboratory conditions. Phaeodactylum tricornutum grew over the entire range of experimental salinities, at 11-26 ºC. The highest maximum growth rates ( 1.6 div d-1) occurred between 9-30 %o and 16-26 ºC. Optimum salinity range for maximum yield (7.0) was found at 9-35 %c, under 16 ºC. Tetraselmis gracilis reproduced from 4 to 40 %o at 11-31 ºC, with the highest values of maximum growth rate ( 1.6 div d-1) and maximum yield (6.1) occurring at salinities between 14-40 %o at 11-21 ºC and 11-16 ºC, respectively. Minutocellus polymorphic and Chaetoceros sp grew between 9-40 %o and 11-31 ºC. Their highest maximum growth rates (2.1 and 2.6 div d-1, respectively) were found at 31ºC, between 20-35 %o and 20-40 %o, respectively. The highest maximum yields for AT. polymorphic (7.2) were recorded between 16-21 ºC at 20-40 %o and for Chaetoceros sp (6.8), between 25-40 %o at 16-31ºC. Chlorophyll-a content per cell was not conspicuously associated to temperature and salinity for the four species. At low salinity extremes, when cell division was inhibited, an increase in the amount of chlorophyll-a per cell was detected.

Descriptors: Biossays, Phytoplankton, Salinity effects, Temperature effects, Growth, Chlorophyll, Phaeodactylum tricornutum, Tetraselmis gracilis, Chaetoceros sp, Minutocellus polymorphic.

RESUMO

Estudou-se o efeito de variações de salinidade (0-40 %o) e temperatura (11-36ºC, em intervalos de 5ºC) sobre a taxa máxima de crescimento (div d-1), o rendimento máximo (logio nº cel ml"1) e o conteúdo de clorofíla-a (pg cel-1) de quatro espécies de algas planctónicas, sob condições de laboratório. Phaeodactylum tricornutum cresceu em toda a amplitude de salinidade experimental e entre 11-26ºC. As mais altas taxas de crescimento (1.6 div d-1) foram obtidas entre 9-30 %o e 16-26ºC. O ótimo de salinidade para o rendimento máximo (7.0) foi observado entre 9- 35%o, à 16ºC. Tetraselmis gracilis se reproduziu nas salinidades de 4 a 40 o e nas temperaturas de 11 a 31ºC, com os mais altos valores de taxas máximas de crescimento (1.6 div d-1) e rendimento máximo (6.1), ocorrendo entre 14-40 %o, nas temperaturas entre 11-21ºC e 11-16ºC, respectivamente. Minutocellus polymorphic e Chaetoceros sp cresceram entre 9-40 %o e 11-31 ºC. Os valores mais altos para as taxas máximas de crescimento (2.1 e 2.6 div d-1, respectivamente) foram obtidos à 31 ºC, entre 20-35 %o e 20-40%o, respectivamente. Os máximos rendimentos para M polymorphic (7.2) foram observados entre 16-21 ºC e 20-40%o< e para Chaetoceros sp (6.8), entre 25-40 %o e 16-31 ºC. Nas quatro espécies estudadas, o conteúdo de clorofíla-a por célula não se associou claramente às variações de temperatura e salinidade. Nos extremos baixos de salinidade, em que a divisão celular foi inibida, verificou-se um aumento da concentração celular de clorofila-a.

Descritores: Bioensaios, Fitoplâncton, Efeitos da salinidade, Efeitos da temperatura, Crescimento, Clorofila, Phaeodactylum tricornutum, Tetraselmis gracilis, Chaetoceros sp, Minutocellus polymorphus.

Full text available only in PDF format.

Texto completo disponível apenas em PDF.

Acknowledgments

This research is a part of a dissertation by T. C. S. Sigaud submitted in partial fulfillment to the requirements for the Master of Science degree at the Universidade de São Paulo. We wish to thank particularly to CIRM"Comissão Interministerial para os Recursos do Mar" for providing the financial support and also to FAPESP "Fundação de Amparo à Pesquisa do Estado de São Paulo" for aiding with a postgraduate fellowship (T.C.S.S.). We are grateful to C B. de Souza, S. M. Koyama and M. Fujimura for their assistance in statistical analysis.

(Manuscript received December 10 1992; revised July 7 1993; accepted December 17 1993)

  • AIDAR-ARAGÃO, E. 1980. Alguns aspectos da autoecologia de Skeletonema costatum (Greville) Cleve de Cananéia (25şS 48şW), com especial referência ao fator salinidade. Ph. D. Thesis, Universidade de São Paulo, Instituto Oceanográfico. 190 p.
  • BAARS, J. W. M. 1988a. Autecological investigations on marine diatoms. 5: Coscinodiscus concinnus W. Smith and Rhizosolenia setigera BrightwelL Hydrobiol. Bull., 22:147-155.
  • ______ 1988b. Autecological investigations on marine diatoms. 6: Rhizosolenia robusta Norman, Rhizosolenia imbricata Brightwell and Rhizosolenia shrubsolei Cleve. Hydrobiol. Bull, 22:157-162.
  • BEN-AMOTZ, A. & GILBOA, A. 1980. Cryopreservation of marine unicellular algae. II. Induction of freezing tolerance. Mar. Ecol. -Prog. Ser., 2:221-224.
  • BERLAND, B. R. 1966. Contribution à l'étude des cultures de diatomées marines. Reel Trav. Stn mar. Endoume, 56:5-82.
  • BONIN, D. J.; DROOP, M. R.; MAESTRINI, S. Y. & BONIN, M.-C. 1986. Physiological features of six micro-algae to be used as indicators of seawater quality. Cryptogam. Algol., 7:23-83.
  • BRAND, L.E. 1984. The salinity tolerance of forty-six marine phytoplankton isolates. Estuar. coast. Shelf Sci., 18:543-556.
  • BROWN, L. M. 1982. Photosynthetic and growth responses to salinity in a marine isolate of Nannochloris bacillaris (Chlorophyceae). J. Phycol., 18:483-488.
  • COHEN, Z. 1986. Products from microalgae. In: Richmond, A., ed. Handbook of microalgal mass cultures. Boca Raton, CRC Press, p.421-454.
  • EPIFANIO, C. E.; VALENTI, C. C. & TURK, C. L. 1981. A comparison of Phaeodactylum tricornutum and Thalassiosira pseudonana as food for the oyster, Crassostrea virginica. Aquaculture, 23:347-353.
  • EPPLEY, R. W. 1972. Temperature and phytoplankton growth in the sea. Fish. Bull U.S.A., 70:1063-1085.
  • FABREGAS, J.; ABALDE, J.; HERRERO, C; CABEZAS, B. &VEIGA,M. 1984. Growth of the marine micro alga Tetraselmis suecica in batch cultures with different salinities and nutrient concentrations. Aquaculture, 42:207-215.
  • ______; HERRERO, C; ABALDE, J. & CABEZAS, B. 1985. Growth, chlorophyll a and protein of the marine microalga Isochrysis galbana in batch cultures with different salinities and high nutrient concentrations. Aquaculture, 50:1-11.
  • FABREGAS, J.; HERRERO, C; CABEZAS, B. & ABALDE, J. 1987. Growth and biochemical variability of the marine microalga Chlorella stigmatophora in batch cultures with different salinities and nutrient gradient concentration. Br. phycol. J., 22:269-276.
  • FAWLEY, M. W. 1984. Effects of light intensity and temperature interactions on growth characteristics of Phaeodactytum tricomutum (Bacillariophyceae). J. Phycol., 20:67-72.
  • FURNAS, M. 1978. Influence of temperature and cell size on the division rate and chemical content of the diatom Chaetoceros curvisetum Clevc. J.expl mar. Biol. Ecol., 34:97-109.
  • GAETA, S. A. 1985. Comparação das respostas de crescimento e fotossíntese de três clones de Phaeodactytum tricornutum Bohlin. M.Sc. Dissertation. Universidade de São Paulo, Instituto Oceanográfico. 106 p.
  • GESSNER, F.1970. Temperature. In: Kinne, O. ed. Marine ecology. London, Wiley-Interscience. v.1, p.363-406.
  • ______ & SCHRAMM, W. 1971. Salinity: plants. In: Kinne, O. ed. Marine ecology. London, Wiley-Interscience. v.1, p.705-820.
  • GOLDMAN, J. C 1977a. Biomass production in mass cultures of marine phytoplankton at varying temperatures. J. expl mar. Biol. Ecol., 27:161-169.
  • ______ 1977b. Temperature effects on phytoplankton growth in continuous culture. Limnol. Oceanogr., 22:932-936.
  • ______ & MANN, R. 1980. Temperature-influenced variations in speciation and chemical composition of marine phytoplankton in outdoor mass cultures. J. expl mar. Biol. Ecol., 46:29-39.
  • ______ & RYTHER, J. H. 1976. Temperature-influenced species competition in mass cultures of marine phytoplankton. Biotechnol. Broengng, 18:1125-1144.
  • GUILLARD, R. R. L. 1973. Division rates. In: Stein, J. R., ed. Handbook of phycological methods, culture methods and growth measurements. London, Cambridge University Press, p.289- 311.
  • HARGRAVES, P. E. & GUILLARD, R. R. L. 1974. Structural and physiological observations on some small marine diatoms. Phycologia, 13:163-172.
  • HAYWARD, J. 1968. Studies on the growth of Phaeodactylum tricornutum (Bohlin). IV. Comparison of different isolates. J, mar. biol. Ass. U.K., 48:657-666.
  • HELLEBUST, J. A. 1976. Effect of salinity on photosynthesis and mannitol synthesis in the green flagellate Platymonas suecica. Can. J. Bot., 54:1735-1741.
  • KOZITSKAYA, V. N. 1989. Effect of illumination and temperature on algal growth: a survey. Hydrobiol. J., 25:53-67.
  • KRAWIEC, R. W. 1982. Autecological and clonal variability of the marine centric diatom Thalassiosira rotula (Bacillariophyceae) in response to light, temperature and salinity. Mar. Biol., 60:79-89.
  • McLACHLAN, J. 1961. The effect of salinity on growth and chlorophyll content in representative classes of unicellular marine algae. Can. J. Microbiol., 7:399-406.
  • MILLER, R. L. & KAMYKOWSKI, D. L. 1986. Effects of temperature, salinity, irradiance and diurnal periodicity on growth and photosynthesis in the diatom Nitzschia americana: light-limited growth. J. Plankt. Res., 8:215:228.
  • MORRIS, I. & GLOVER, H.E. 1974. Questions on the mechanism of temperature adaptation in marine phytoplankton. Mar. Biol., 24:147-154.
  • NELSON, D. J.; D'ELIA, C. F. & GUILLARD, R. R. L. 1979. Growth and competition of the marine diatoms Phaeodactylum tricornutum and Thalassiosira pseudonana. II. Light limitation. Mar. Biol., 50:313-318.
  • NETER, J.; WASSERMAN, W. & KUTNER, M. H. 1990. Applied linear statistical models-Regression, analysis of variance and experimental designs. 3rd ed. Homewood, R. D. Irwin. 1181 p.
  • OKAUCHI, M. & FUKUSHO, K. 1984. Food value of a minute alga, Tetraselmis tetrathele, for the rotifer Brachionus policatilis culture. I. Population growth with batch culture. Bull natn. Res. Inst. Aquaculture, 5:13-18.
  • ______ & HIRANO, Y. 1986. Nutritional value of Tetraselmis tetrathele for larvae of Penaeus japonicus. Bull. natn. Res. Inst. Aquaculture, 9:29-33.
  • PAASCHE, E. 1975. The influence of salinity on the growth of some plankton diatoms from brackish .water. Norw. J. Bot., 22:209-215.
  • PROVASOLI, L.;McLAUGHUN, J.J. A. & DROOP, M. R. 1957. The development of artificial media for marine algae. Arch. Mikrobiol., 25:392-428.
  • RAVEN, J. A. & GEIDER, R. J. 1988. Temperature and algal growth. New Phytol., 110:441-461.
  • RAYMONT, J. E. G. & ADAMS, M. N. E. 1958. Studies on the mass culture of Phaeodactylum. Limnol. Oceanogr., 3:119-136.
  • REDALJE, D. G. & LAWS, E. A. 1983. The effects of environmental factors on growth and the chemical and biochemical composition of marine diatoms. I. Light and temperature effects. J. expl mar. Biol Ecol., 68:59-79.
  • RENDALL, D. A. & WILKINSON, M. 1986. Environmental tolerance of the estuarine diatom Melosira nummuloides (Dillv.) Ag. J. expl mar. Biol. Ecol., 102:133-151.
  • RICHMOND, A. E. 1986. Microalgaculture. CRC Critical Rev. Biotechnol., 4(4):369-438.
  • SAKS, N. M., 1982. Temperature, salinity and ultraviolet irradiation effects on the growth of strains of Nitzschia ovalis. Mar. Biol., 68:175-179.
  • SHARP, J. H.; UNDERHILL, P. A. & HUGHES, D. J. 1979. Interaction (allelopathy) between marine diatoms: Thalassiosira pseudonana and Phaeodactylum tricornutum. J. Phycol., 15:353-362.
  • SHIMURA, S.; SHIBUYA, H. & ICHIMURA, S. 1979. Growth and photosynthesis properties of some planktonic marine diatoms at various salinity regimes. Mer, Tokyo, 17:149-155.
  • SHUBERT, L. E. 1984. Algae as ecological indicators. London, Academic Press. 434 p.
  • SPENCER, C P. 1954. Studies on the culture of a marine diatom. J. mar. biol. Ass. U.K., 33:265-290.
  • STRICKLAND, J. D. H. & PARSONS, T. R. 1968. A practical handbook of seawater analysis. Bull. Fish. Res. Bd Can., (167):1-311.
  • SUBBA RAO, D. V. 1981. Growth response of marine phytoplankters to selected concentrations of trace metals. Bot. mar., 24:369-379.
  • TEIXEIRA, C. 1973. Preliminary studies of primary production in the Ubatuba region (Lat. 23ş30'S-Long. 45ş06'W), Brazil Bolm Inst, oceanogr., S Paulo, 22:29-58.
  • TSURUTA,A.; OHGAI,M.; UENO,S. & YAMADA, M. 1985. The effect of the chlorinity on the growth of planktonic diatom Skeletonema costatum (Greville) Cleve in vitro. Bull. japan. Soc. scient. Fish., 51:1883-1886.
  • VERITY, P. G. 1981. Effects of temperature, irradiance, and daylenght on the marine diatom Leptocylindrus danicus Cleve. I. Photosynthesis and cellular composition. J. expl mar. Biol. Ecol., 55:79-91.
  • VIEIRA, A. A. H. 1975. Estudos experimentais em fitoplâncton marinho. Culturas e aspectos ecofisiológicos. M.Sc. Dissertation. Universidade de São Paulo, Instituto Oceanográfico. 106 p.
  • WALSH, D. T.; WTTHSTANDLEY, C. A.; KRAUS, R. A. & PETROVITS, E. J. 1987. Mass culture of selected marine microalgae for the nursery production of bivalve seed. J. Shellfish Res., 6:71-77.
  • WATRAS, C. J.; CHISHOLM, S. W. & ANDERSON, D. M. 1982. Regulation of growth in an estuarine clone of Gonyaulax tamarensis Lebour: salinity-dependent temperature responses. J. expl mar. Biol. Ecol., 62:25-37.
  • WIKFORS, G. H.; TWAROG JR, J. W. & UKELES, R. 1984. Influence of chemical composition of algal food sources on growth of juvenile oysters, Crassostrea virginica. Biol. Bull. mar. biol. Lab., Woods Hole, 167:251-263.
  • YODER, J. A. 1979. Effect of temperature on light-limited growth and chemical composition of Skeletonema costatum (Bacfllariophyceae). J. Phycol., 75:362-370.

Publication Dates

  • Publication in this collection
    14 May 2012
  • Date of issue
    1993

History

  • Accepted
    17 Dec 1993
  • Reviewed
    07 July 1993
  • Received
    10 Dec 1992
Instituto Oceanográfico da Universidade de São Paulo Praça do Oceanográfico, 191, 05508-120 São Paulo SP Brasil, Tel.: (55 11) 3091 6513, Fax: (55 11) 3032 3092 - São Paulo - SP - Brazil
E-mail: amspires@usp.br