J. For. Sci., 2016, 62(3):137-142 | DOI: 10.17221/73/2015-JFS

Development of models for forest variable estimation from airborne laser scanning data using an area-based approach at a plot levelOriginal Paper

J. Sabol1, D. Procházka2, Z. Patočka1
1 Department of Forest Management and Applied Geoinformatics, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czech Republic
2 Department of Informatics, Faculty of Business and Economics, Mendel University in Brno, Brno, Czech Republic

Airborne laser scanning (ALS) is increasingly used in the forestry over time, especially in a forest inventory process. A great potential of ALS lies in providing quick high precision data acquisition for purposes such as measurements of stand attributes over large forested areas. Models were developed using an area-based approach to predict forest variables such as wood volume and basal area. The solution was performed through developing an object-oriented script using Python programming language, Python Data Analysis Library (Pandas), which represents a very flexible and powerful data analysis tool in conjunction with interactive computational environment the IPython Notebook. Several regression models for estimation of forest inventory attributes were developed at a plot level.

Keywords: Python; Fusion; forest inventory; linear regression; Norway spruce

Published: March 31, 2016  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Sabol J, Procházka D, Patočka Z. Development of models for forest variable estimation from airborne laser scanning data using an area-based approach at a plot level. J. For. Sci.. 2016;62(3):137-142. doi: 10.17221/73/2015-JFS.
Download citation

References

  1. Bouvier M., Durrieu S., Fournier R.A., Renaud J.P. (2015): Generalizing predictive models of forest inventory attributes using an area-based approach with airborne LiDAR data. Remote Sensing of Environment, 156: 322-334. Go to original source...
  2. Chen Q., Gong P., Baldocchi D., Tian Y.Q. (2007): Estimating basal area and stem volume for individual trees from LiDAR data. Photogrammetric Engineering and Remote Sensing, 73: 1355-1365. Go to original source...
  3. Holmgren J., Perrson Å. (2004): Identifying species of individual trees using airborne laser scanner. Remote Sensing of Environment, 90: 415-423. Go to original source...
  4. Hunter J.D., Dale D., Firing E., Droettboom M. (2015): Matplotlib release 1.4.3 user guide. Available at http://matplotlib.org/Matplotlib.pdf (accessed Aug 15, 2015).
  5. Hyyppä J., Inkinen M. (1999): Detecting and estimating attributes for single trees using laser scanner. The Photogrammetric Journal of Finland, 16: 27-42.
  6. Lim K.S., Treitz P.M. (2004): Estimation of above ground forest biomass from airborne discrete return laser scanner data using canopy-based quantile estimators. Scandinavian Journal of Forest Research, 19: 558-570. Go to original source...
  7. Means J.E., Acker S.A., Fitt B.J., Renslow M., Emerson L., Hendrix C.J. (2000): Predicting forest stand characteristics with airborne scanning LiDAR. Photogrammetric Engineering and Remote Sensing, 66: 1367-1371.
  8. McGaughey R. (2014): Fusion/LDV: Software for LiDAR data analysis and visualization, version 3.42. Available at http://forsys.cfr.washington.edu/fusion/FUSION_manual.pdf (accessed Aug 15, 2015).
  9. McKinney W. (2015): Pandas: Powerful Python data analysis toolkit, release 0.16.2. Available at http://pandas.pydata.org/pandas-docs/stable/pandas.pdf (accessed Aug 15, 2015).
  10. Naesset E. (2002): Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data. Remote Sensing of Environment, 80: 88-99. Go to original source...
  11. Naesset E. (2004): Practical large-scale forest stand inventory using a small-footprint airborne scanning laser. Scandinavian Journal of Forest Research, 19: 164-179. Go to original source...
  12. Naesset E. (2007): Airborne laser scanning as a method in operational forest inventory: Status of accuracy assessments accomplished in Scandinavia. Scandinavian Journal of Forest Research, 22: 433-442. Go to original source...
  13. Naesset E., Bollandsås O.M., Gobakken T. (2005): Comparing regression methods in estimation of biophysical properties of forest stands from two different inventories using laser scanner data. Remote Sensing of Environment, 94: 541-553. Go to original source...
  14. Packalén P., Maltamo M. (2007): The k-MSN method for the prediction of species-specific stand attributes using airborne laser scanning and aerial photographs. Remote Sensing of Environment, 109: 328-341. Go to original source...
  15. Petráš R., Pajtík J. (1991): Sústava česko-slovenských objemových tabuliek drevín. Lesnícky časopis - Forestry Journal. 37: 49-56.
  16. Peréz F., Granger B.E. (2007): IPython: A system for interactive scientific. Computing in Science and Engineering, 9: 21-29. Go to original source...
  17. Perktold J., Seabold S., Taylor J. (2013): Statsmodels documentation, release 0.6.1. Available at http://statsmodels.sourceforge.net/stable/index.html (accessed Aug 15, 2015).
  18. Peuhkurinen J. (2011): Estimating tree size distributions and timber assortment recoveries for wood procurement planning using airborne laser scanning. [Ph.D. Thesis.] Joensuu, University of Eastern Finland: 43. Go to original source...
  19. Poleno Z., Vacek S., Podrázský V. (2007): Pěstování lesů. 1st Ed. Kostelec nad Černými lesy, Lesnická práce: 315.
  20. Popescu S.C., Wynne R.H., Nelson R.F. (2014): Measuring individual tree crown diameter with LiDAR and assessing its influence on estimating forest volume and biomass. Canadian Journal of Remote Sensing, 29: 564-577. Go to original source...
  21. TFE Masaryk Forest Křtiny (2002-2008): About us. Available at http://www.slpkrtiny.cz/en/slp-krtiny/about-us/ (accessed Feb 1, 2016).
  22. White J.C., Wulder M.A., Varhola A., Vastaranta M., Coops N.C., Cook B.D., Pitt D., Woods M. (2013): A best practices guide for generating forest inventory attributes from airborne laser scanning data using an area-based approach. The Forestry Chronicle, 89: 722-723. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.