J. For. Sci., 2015, 61(5):193-199 | DOI: 10.17221/78/2014-JFS

Deforestation modelling using logistic regression and GISOriginal Paper

M. Pir Bavaghar
Faculty of Natural Resources, Center for Research & Development of Northern Zagros Forests, University of Kurdistan, Sanandaj, Iran

A methodology has been used by means of which modellers and planners can quantify the certainty in predicting the location of deforestation. Geographic information system and logistic regression analyses were employed to predict the spatial distribution of deforestation and detects factors influencing forest degradation of Hyrcanian forests of western Gilan, Iran. The logistic regression model proposed that deforestation is a function of slope, distance to roads and residential areas. The coefficients for the explanatory variables indicated that the probability of deforestation is negatively related to slope, distance from roads and residential areas. Although the distance factor was found to be a contributor to deforestation, its effect is lower than that of slope. The correlates of deforestation may change over time, and so the spatial model should be periodically updated to reflect these changes. Like in any model, the quality may be improved by introducing the new variables that may contribute to explaining the spatial distribution of deforestation.

Keywords: manmade areas; physiographic factors; roads; probability; Hyrcanian forests

Published: May 31, 2015  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Pir Bavaghar M. Deforestation modelling using logistic regression and GIS. J. For. Sci.. 2015;61(5):193-199. doi: 10.17221/78/2014-JFS.
Download citation

References

  1. Amini M.R., Shataee Sh., Moaieri M.H., Ghazanfari H. (2009): Deforestation modeling and investigation on related physiographic and human factors using satellite images and GIS (Case study: Armardeh forests of Baneh). Iranian Journal of Forest and Poplar Research, 17: 431-443. (in Persian)
  2. Bagheri R., Shataee Sh. (2010): Modeling forest area decreases using logistic regression (Case study: Chehl-Chay catchment, Golestan province). Iranian Journal of Forest, 2: 243-252. (in Persian)
  3. Beers T.W., Press P.E., Wensel L.C. (1996): Aspect transformation in site productivity research. Journal of Forestry, 64: 691-692.
  4. Bio A.M.F., Alkemende R., Barendregt A. (1998): Determining alternative models for vegetation response analysis: a nonparametric approach. Journal of Vegetation Science, 9: 5-16. Go to original source...
  5. Chatfield C. (1995): Model uncertainty, data mining and statistical inference. Journal of the Royal Statistical Society, 158: 419-466. Go to original source...
  6. Etter A., McAlpine C., Wilson K., Phinn S., Possingham H. (2006): Regional patterns of agricultural land use and deforestation in Colombia. Agriculture, Ecosystems & Environment, 114: 369-386. Go to original source...
  7. Felicíslmo A.M., Francés E., Fernández J.M., González-Díez A., Varas J. (2002): Modeling the potential distribution of forests with a GIS. Photogrammetric Engineering and Remote Sensing, 68: 455-461.
  8. Geist H.J., Lambin E.F. (2002): Proximate causes and underlying driving forces of tropical deforestation. Bioscience, 52: 143-150. Go to original source...
  9. Laurance W.F., Albernaz A.K., Schroth G., Fearnside P.M., Bergen S., Venticinque E.M., Da Costa C. (2002): Predictors of deforestation in the Brazilian Amazon. Journal of Biogeography, 29: 737-748. Go to original source...
  10. Linkie M., Smith R.J., Leader-Williams N. (2004): Mapping and predicting deforestation patterns in the lowlands of Sumatra. Biodiversity Conservation, 13: 1809-1818. Go to original source...
  11. Linkie M., Rood E., Smith R.J. (2010): Modelling the effectiveness of enforcement strategies for avoiding tropical deforestation in Kerinci SeblatNational Park, Sumatra. Biodiversity Conservation, 19: 973-984. Go to original source...
  12. Ludeke A.K. (1990): An analysis of antropogenic deforestation using logistic regression and GIS. Journal of Environmental Management, 31: 247-259. Go to original source...
  13. Makinano M.M., Santillan J.R., Paringit E.C. (2010): Detection and analysis of deforestation in cloud-contaminated Landsat images: A case of two Philippine provinces with history of forest resource utilization. In: Proceeding of the 31st Asian Conference on Remote Sensing (ACRS 2010): Remote Sensing for Global Change and Sustainable Development, Hanoi, Nov 1-5, 2010: 44-52.
  14. Mertens B., Lambin E. (1999): Modelling land cover dynamics: integration of fine-scale land cover data with landscape attributes. International Journal of Applied Earth Observation and Geoinformation, 1: 48-52. Go to original source...
  15. Nagendra H., Southworth J., Tucker C.J. (2003): Accessibility as a determinant of landscape transformation in western Hondrus: linking pattern and process. Landscape Ecology, 18: 141-158. Go to original source...
  16. Ostapowicz K. (2005): Model of forests spatial distribution in the western part of the Karpaty Mts. In: 8th AGILE Conference on Geographic Information Science, Estoril, May 26-28, 2005: 611-617.
  17. Peng C.J., Lee K.L., Ingersoll G.M. (2002): An introduction to Logistic regression analysis and reporting. The Journal of Educational Research, 96: 3-14. Go to original source...
  18. Pir Bavaghar M., Darvishsefat A.A., Namiranian M. (2003): The study of spatial distribution of forest changes in the northern forests of Iran. In: Proceedings of the Map Asia Conference, Kuala Lumpur, Oct 14-15, 2003: 1-6.
  19. Pir Bavaghar M. (2004): Forest Area Change Detection Related To Topographic Factors and Residential Areas (Case Study: Eastern Forests of Gilan Province). [MSc. Thesis.] Karaj, University of Tehran: 110.
  20. Rafieyan O., Darvishsefat A.A., Namiranian M. (2003): Forest area change detection using ETM+ data in northern forest of Iran. In: The First International Conference on Environmental Research and Assessment, Bucharest, Mar 23-27, 2003: 1-4.
  21. Rivera S., Martinez de Anguita P., Ramsey R.D., Crowl T.A. (2012): Spatial modeling of tropical deforestation using socioeconomic and biophysical data. Small-scale Forestry, 12: 321-334. Go to original source...
  22. Rueda X. (2010): Understanding deforestation in the southern Yucatan: insights from a sub-regional, multi-temporal analysis. Regional Environmental Change, 10:175-189. Go to original source...
  23. Sagheb Talebi Kh., Sajedi T., Yazdian F. (2003): Forests of Iran, Research Institute of Forests and Rangelands, Forest Research Devision, Iran: 28.
  24. Salman Mahini A., Feghhi J., Nadali A., Riazi B. (2009): Tree cover change detection through artificial neural network classification using Landsat TM and ETM+ images (case study: Golestan Province, Iran). Iranian Journal of Forest and Poplar Research, 16: 495-505.
  25. Schneider L.C., Pontius R.G. (2001): Modelling land-use changes in the Ipswich watershed, Massachusetts, USA. Agriculture, Ecosystems & Environment, 85: 83-94. Go to original source...
  26. Serneels S., Lambin E.F. (2001): Proximate causes of land use change in Narok District, Kenya: a spatial statistical model. Agriculture, Ecosystems & Environment, 85: 65-81. Go to original source...
  27. Smith R.J., Easton J., Nhancale B.A., Armstrong A.J., Culverwell J., Dlamini S., Goodman P.S., Loffler L., Matthews W.S., Monadjem A., Mulqueeny C.M., Ngwenya P., Ntumi C.P., Soto B., Leader-Williams N. (2008): Designing a transfrontier conservation landscape for the Maputaland centre of endemism using biodiversity, economic and threat data. Biological Conservation, 141: 2127-2138. Go to original source...
  28. Wilson K., Newton A., Echeverria C., Weston Ch., Burgman M. (2005): A vulnerability analysis of the temperate forests of south central Chile. Biological Conservation, 122: 9-21. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.