Variable Viscosity of Water as the Controlling Factor in Energetic Quantities that Control Living Systems: Physicochemical and Astronomical Interactions

Article Preview

Abstract:

The emergence of energy from the product of viscosity, volume and intrinsic or extrinsic frequency indicates that the ten fold difference in this property displayed by water could define the boundary of the physicochemical conditions of living systems. Intra-aqueous energy induced by geomagnetic variations and experimental time-varying magnetic fields within specific volumes of water maintained in static, dark conditions can be manifested as photon emissions with shifts in spectral power that approximate the width of the plasma cell membrane. Various manipulations of the viscosity of water accurately predicted the frequency required to affect intracellular organelles such as vesicles as well as the intramolecular pressures that affect interactions with photons. Application of the Smoluschowski-Einstein relation to the proton, the mediator of pH and the dynamics of the hydronium ion, potentially explained the vector characteristics of the frequency band of extremely low frequency magnetic fields that slow malignant cells. The derivation of viscosity from the inverse of the Newtonian Gravitational Constant, diffusivity and the square of the applied frequency indicates that resonant oscillations between the solid earth and the atmosphere and unit variations in solar flux density may be relevant variables.

Info:

Pages:

1-9

Citation:

Online since:

January 2015

Export:

* - Corresponding Author

[1] E. Del Guidice, G. Preparata, Journal of Biological Physics 20 (1994) 105-116.

Google Scholar

[2] C. R. House, Water transport in cells and tissues, Edward Arnold (Publishers) LTD, London, 1974.

Google Scholar

[3] B. T. Dotta, M. A. Persinger, Journal of Biophysical Chemistry 3(2012) 72-80.

Google Scholar

[4] M. V. Trushin, Microbiological Research 159 (2004) 1-10.

Google Scholar

[5] R. Vogel, R. Suessmuth, Bioelectrochemistry and Bioenergetics 45 (1998) 93-101.

Google Scholar

[6] M. A. Persinger, International Letters of Chemistry, Physics and Astronomy 14 (2014) 1-10.

Google Scholar

[7] M. A. Persinger, Current Medicinal Chemistry 17 (2010) 3094-3098.

Google Scholar

[8] J. Gu, Y. Xie, H. F. Schaefer III, Nucleic Acids 35 (2007) 5165-5172.

Google Scholar

[9] T. E. Decoursey, Physiological Reviews 83 (2003) 475-579.

Google Scholar

[10] C. W. Song, R. Griffin, H. J. Park, in B. Teicher (ed) Cancer drug discovery and development: cancer drug resistance, Humana Press, N.J., 2006.

Google Scholar

[11] C. A. Wright, Biochemica et Biophysica Acta 1757 (2006) 886-912.

Google Scholar

[12] C. Chai, H. Yoo, G. H. Pollack, Journal of Physical Chemistry 113 (2009) 13953-13958.

Google Scholar

[13] G. H. Pollack, Advances in Colloid and Interface Science 103 (2003) 173-196.

Google Scholar

[14] G. H. Pollack, X. Figueroa, Q. Zhao, International Journal of Molecular Sciences 10 (2009) 1419-1429.

Google Scholar

[15] P. W. Rand, E. Lacombe, Journal of Clinical Investigation 43 (1964) 2214-2226.

Google Scholar

[16] K. Fushimi, A. S. Verkman, Journal of Cell Biology 112 (1991) 719-725.

Google Scholar

[17] N. Verdel, P. Bukovec, Entropy 16 (2014) 2146-2160.

Google Scholar

[18] N. Rouleau, T. N. Carniello, M. A. Persinger, Journal of Biophysical Chemistry 5 (2014) 44-53.

Google Scholar

[19] N. J. Murugan, L. M. Karbowski, B. T. Dotta, M. A. Persinger, International Journal of Pure and Applied Chemistry 5 (2015) 131-139.

Google Scholar

[20] M. A. Persinger, S. A. Koren, International Journal of Neuroscience 117 (2007) 157-175.

Google Scholar

[21] S. A. Koren, B. T. Dotta, M. A. Persinger, The Open Astronomy Journal 7 (2014) 1-6. [22] B. T. Dotta, N. J. Murugan, L. M. Karbowski, M. A. Persinger, International Journal of Physical Sciences 8 (2013) 1783-1787

Google Scholar

[23] B. T. Dotta, S. A. Koren, M. A. Persinger, Journal of Consciousness Exploration & Research 4 (2013) 25-34.

Google Scholar

[24] N. J. Murugan, L. M. Karbowski, R. M. Lafrenie, M. A. Persinger, Journal of Biophysical Chemistry, in press.

Google Scholar

[25] S. M. Blinkov, I. I. Glezer, The human brain in figures and tables: a quantitative handbook, Plenum Press, N.Y., 1968.

Google Scholar

[26] C. Margraves, K. Kihm, S. Y. Yoon, C. K, Choi, S. Lee, J. Liggett, S. J. Baek, Biotechnology and Bioengineering 108 (2011) 2504-2508.

DOI: 10.1002/bit.23186

Google Scholar

[27] R. Delgado, C. Maureira, C. Oliva, Y. Kidokoro, P. Labarca, Neuron 28 (2000) 941-953.

DOI: 10.1016/s0896-6273(00)00165-3

Google Scholar

[28] Y. Goda, C. F. Stevens, Procedings of the National Academy of Sciences 91 (1994) 12942-12946.

Google Scholar

[29] C. F. Stevens, J. H. Williams, Journal of Neurophysiolgy 98 (2007) 3221-3229.

Google Scholar

[30] B. Chai, J-m. Zheng, Q. Zhao, G. H. Pollack, Journal of Physical Chemistry 112 (2008) 2242-2247.

Google Scholar

[31] K. Nishida, N. Kobayashi, Y. Fukao, Science 287 (2000) 2244-2246.

Google Scholar

[32] D. A. E. Vares, M. A. Persinger, International Journal of Geosciences 5 (2014) 1503-1508. ( Received 21 December 2014; accepted 30 December 2014 )

Google Scholar