Effects of Salinity Stress on Growth and Phenolics of Rice (Oryza sativa L.)

Article Preview

Abstract:

This study was conducted to determine the correlation between of salinity stress on growth and phenolic compounds in rice. It was observed that salinity stress caused a significant decrease in shoot lengths, fresh and dry weights of all rice varieties. Under salinity stress, changes of chemical contents also differed among phenolic compounds and rice cultivars. Total phenolics and flavonoids, and contents of vanillin and protocatechuic acid in tolerant varieties were strongly increased, whereas in contrast, they were markedly reduced in the susceptible cultivar. Ferulic acid and p-coumaric acid were detected only in tolerance rice. Vanillin and protocatechuic acid may play a role, but ferulic acid and p-coumaric acid may be much involved in the tolerant mechanism against salinity stress. Ferulic acid and p-coumaric acid and their derivatives are able to be exploited as promising agents to reduce detrimental effects of salinity stress on rice production.

Info:

Pages:

1-10

Citation:

Online since:

August 2016

Export:

* - Corresponding Author

[1] T. J. Flowers, Improving crop salt tolerance, J. Exp. Bot. 55 (2004) 307-319.

Google Scholar

[2] R. Munns, M. Tester, Mechanisms of salinity tolerance, Annu. Rev. Plant Biol. 59 (2008) 651–681.

DOI: 10.1146/annurev.arplant.59.032607.092911

Google Scholar

[3] A. Wahhab, Salt tolerance of various varieties of agricultural crops at the germination stage, in Salinity Problems in the Arid Zone. Proc. Teheran Symposium on Arid Zone Research, 14, UNESCO, 1961, 185-192.

Google Scholar

[4] R. Munns, Comparative physiology of salt and water stress, Plant Cell Environ. 25 (2002) 239-250.

DOI: 10.1046/j.0016-8025.2001.00808.x

Google Scholar

[5] J. Cuartero, M.C. Bolarin, M.J. Asins, V. Moreno, Increasing salt tolerance in the tomato, J. Exp. Bot. 57 (2006) 1045-1058.

Google Scholar

[6] M. Akbar, Breeding for salinity resistance in rice, in Prospects for bio-saline research; Ahmed, R., Pietro, A.S., Eds.; Department of Botany, University of Karachi, Pakistan, 1986, 37-55.

Google Scholar

[7] L. Menezes-Benavente, S.P. Kernodle, M. Margis-Pinheiro, J.G. Scandalios, Salt-induced antioxidant metabolism defenses in maize (Zea mays L.) seedlings, Redox. Rep. 9 (2004) 29–36.

DOI: 10.1179/135100004225003888

Google Scholar

[8] H. Hichem, D. Mounir, E.A. Naceur, Differential responses of two maize (Zea mays L.) varieties to salt stress: Changes on polyphenols composition of foliage and oxidative damages, Ind. Crops Prod. 30 (2009) 144–151.

DOI: 10.1016/j.indcrop.2009.03.003

Google Scholar

[9] D.A. Meloni, C.A. Oliva, J. Cambraia, Photosynthesis and activity of superoxide dismiotase, peroxidase and glutathione reductase in cotton under salt stress, Braz. J. Plant Physiol. 15 (2003) 12–21.

DOI: 10.1016/s0098-8472(02)00058-8

Google Scholar

[10] N.P. Rout, B.P. Shaw, Salt tolerance in aquatic macrophytes: possible involvement of the antioxidative enzymes, Plant Sci. 160 (2001) 415–423.

DOI: 10.1016/s0168-9452(00)00406-4

Google Scholar

[11] J.M. Awika, L.M. Rooney, Sorghum phytochemicals and their potential impact on human health, Phytochemistry. 65 (2004) 1199-1221.

DOI: 10.1016/j.phytochem.2004.04.001

Google Scholar

[12] I.N. De Abreu, P. Mazzafera, Effect of water and temperature stress on the content of active constituents of Hypericum brasilienne Choisy, Plant Physiol. Biochem. 43 (2005) 241-248.

DOI: 10.1016/j.plaphy.2005.01.020

Google Scholar

[13] S. Kuntz, U. Wenzel, H. Daniel, Comparative analysis of the effects of flavonoids on proliferation, cytotoxity, and apoptosis in human colon cancer cell lines, Eur. J. Nutr. 38 (1999) 133-142.

DOI: 10.1007/s003940050054

Google Scholar

[14] H. Czeczot, Biological activities of flavonoids: A review, Pol. J. Food Nutr. 950 (2000) 3-13.

Google Scholar

[15] R.A. Dixon, N. Paiva, Stress-induced phenylpropanoid metabolism, The Plant Cell. 7 (1995) 1085-1097.

DOI: 10.1105/tpc.7.7.1085

Google Scholar

[16] M.R. Roberts, N.D. Paul, Seduced by the dark side: integrating molecular and ecological perspectives on the influence of light on plant defense against pests and pathogens, New Phytol. 170 (2006) 677-699.

DOI: 10.1111/j.1469-8137.2006.01707.x

Google Scholar

[17] R. Julkunen-Tiito, N. Nenadis, S. Neugart, M. Robson, G. Agati, J. Vepsa··la··inen, G. Zipoli, L. Nybakken, B. Winkler, M. Jansen, Assessing the response of plant flavonoids to UV radiation: anoverview of appropriate techniques, Phyto. Rev. 14 (2015) 273-279.

DOI: 10.1007/s11101-014-9362-4

Google Scholar

[18] D. Krishnaiah, R. Sarbatly, R. Nithyanandam, A review on the antioxidant potential of medicinal plant species, Food Bioprod. Process. 89 (2011) 217-233.

DOI: 10.1016/j.fbp.2010.04.008

Google Scholar

[19] G. Agati, E. Azzarello, S. Pollastri, M. Tattini, Flavonoids as antioxidants in plants: location and functional significance, Plant Sci. 196 (2012) 67-76.

DOI: 10.1016/j.plantsci.2012.07.014

Google Scholar

[20] C. Brunetti, M. Di Ferdinando, A. Fini, S. Pollastri, M. Tattini, Flavonoids as antioxidants and development regulators: relative significance in plants and humans, Int. J. Mol. Sci. 14 (2013) 3540-3555.

DOI: 10.3390/ijms14023540

Google Scholar

[21] A. Wahid, A. Ghazanfar, Possible involvement of some secondary metabolites in salt tolerance of sugarcane, J. Plant Physiol. 163 (2006) 723–730.

DOI: 10.1016/j.jplph.2005.07.007

Google Scholar

[22] R. Ksouri, W. Megdiche, A. Debez, H. Falleh, C. Grignon, C. Abdelly, Salinity effects on polyphenol content and antioxidant activities in leaves of the halophyte Cakile maritima, Plant Physiol. Biochem. 45 (2007) 244-249.

DOI: 10.1016/j.plaphy.2007.02.001

Google Scholar

[23] F. Hanen, R. Ksouri, W. Megdiche, N. Trabelsi, M. Boulaaba, C. Abdelly, Effect of salinity on growth, leaf phenolic content and antioxidant scavenging activity in Cynara cardunculus L., in Biosaline Agriculture and High Salinity Tolerance; Abdelli, C., Ozturk, M., Ashraf, M., Grignon, Y.C., Eds.; Birkhauser Verlag, Switzerland, 2008, 335-343.

DOI: 10.1007/978-3-7643-8554-5_31

Google Scholar

[24] J.M. Navarro, P. Flores, C. Garrido, V. Martinez, Changes in the contents of antioxidant compounds in pepper fruits at different ripening stages, as affected by salinity, Food Chem. 96 (2006) 66-73.

DOI: 10.1016/j.foodchem.2005.01.057

Google Scholar

[25] A.K. Parida, A.B. Das, Y. Sanada, P. Mohanty, Effects of salinity on biochemical components of the mangrove, Aegiceras corniculatum, Aqua. Bot. 80 (2004) 77-87.

DOI: 10.1016/j.aquabot.2004.07.005

Google Scholar

[26] G.B. Gregorio, D. Senadhira, R.D. Mendoza, Screening rice for salinity tolerance, in IRRI Discussion Paper Series no. 22, International Rice Research Institute, Manila, Philippines, 1997, 1-30.

Google Scholar

[27] H.H. Ti, Q. Li, R.F. Zhang, M.W. Zhang, Y.Y. Deng, Z.C. Wei, Free and bound phenolic profiles and antioxidant activity of milled fractions of different indica rice varieties cultivated in southern China, Food Chem. 159 (2014) 166-174.

DOI: 10.1016/j.foodchem.2014.03.029

Google Scholar

[28] A. Djeridane, M. Yousfi, B. Nadjemi, D. Boutassouna, P. Stocker, N. Vidal, Antioxidant activity of some Algerian medicinal plants extracts containing phenolic compounds, Food Chem. 97 (2006) 654-660.

DOI: 10.1016/j.foodchem.2005.04.028

Google Scholar

[29] E. Bandeoglu, F. Eyidogan, M. Yuceland, H.A. Oktem, Antioxidant responses of shoots and roots of lentil to NaCl-salinity stress, Plant Growth Regul. 42 (2004) 69-77.

DOI: 10.1023/b:grow.0000014891.35427.7b

Google Scholar

[30] M.R. Suplick-Ploense, Y.L. Qian, J.C. Read, Salinity tolerance of Texas bluegrass, Kentucky bluegrass, and their hybrids, Crop Sci. 42 (2002) 2025-2030.

DOI: 10.2135/cropsci2002.2025

Google Scholar

[31] V. Kumar, V. Shriram, T.D. Nikam, N. Jawali, M.G. Shitole, Antioxidant enzyme activities and protein profiling under salt stress in indica rice genotypes differing in salt tolerance, Arch Agron Soil Sci. 55 (2009) 379-394.

DOI: 10.1080/03650340802595543

Google Scholar

[32] M.M. Chaves, J. Flexas, C. Pinheiro, Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell, Annal. Bot. 103 (2009) 551-560.

DOI: 10.1093/aob/mcn125

Google Scholar

[33] A. Rezazadeh, A. Ghasemzadeh, M. Brani, T. Telmadarrehei, Effect of salinity on phenolic composition and antioxidant activity of Artichoke (Cynara scolymus L.) leaves, J. Med. Plant Res. 6 (2012) 245-252.

DOI: 10.3923/rjmp.2012.245.252

Google Scholar

[34] J. Miljuš-Djukić, N. Stanisavljević, S. Radović, Ž. Jovanović, A. Mikić, V. Maksimović, Differential response of three contrasting pea (Pisum arvense, P. sativum and P. fulvum) species to salt stress: assessment of variation in antioxidative defence and miRNA expression, Aust. J. Crop. Sci. 7 (2013) 2145-2153.

DOI: 10.1016/j.plaphy.2014.07.008

Google Scholar

[35] M. Hussain, M. Farooq, M. Shehzad, M.B. Khan, A. Wahid, G. Shabir, Evaluating the performance of elite sunflower hybrids under saline conditions, Int. J. Agric. Biol. 14 (2012) 131-135.

Google Scholar

[36] S. Danai-Tambhale, V. Kumar, V. Shriram, Differential response of two scented indica rice (Oryza sativa) cultivars under salt stress, J. Stress Physiol. Biochem. 7 (2011) 387-397.

Google Scholar

[37] K.S. Gould, J. McKelvie, K.R. Markham, Do anthocyanins function as antioxidants in leaves? Imaging of H2O2 in red and green leaves after mechanical injury, Plant Cell Environ. 25 (2002) 1261-1269.

DOI: 10.1046/j.1365-3040.2002.00905.x

Google Scholar

[38] F. Tomas-Barberan, J.C. Espin, Phenolic compounds and related enzymes as determinants of quality of fruits and vegetables, J. Sci. Food. Agric. 81 (2001) 853-876.

DOI: 10.1002/jsfa.885

Google Scholar

[39] I.K. Valentine, V.K. Maria, B. Bruno, Phenolic cycle in plants and environment, J. Mol. Cell Biol. 2 (2003) 13-18.

Google Scholar

[40] S. Jamalian, M. Gholami, M. Esna-Ashari, Abscisic acid-mediated leaf phenolic compounds, plant growth and yield is strawberry under different salt stress regimes, Theor. Exp. Plant Physiol. 25 (2013) 291-299.

Google Scholar

[41] K. Wakabayashi, T. Hoson, S. Kamisaka, Osmotic stress suppresses cell wall stiffening and the increase in cell wall bound ferulic and diferulic acids in wheat coleoptiles, Plant Physiol. 113 (1997) 967-973.

DOI: 10.1104/pp.113.3.967

Google Scholar

[42] D.M. Li, Y.X. Nie, J. Zhang, J.S. Yin, Q. Li, X.J. Wang, J.G. Bai, Ferulic acid pretreatment enhances dehydration-stress tolerance of cucumber seedlings, Biol. Plant. 57 (2013) 711-717.

DOI: 10.1007/s10535-013-0326-0

Google Scholar

[43] K. Krygier, F. Sosulski, L. Hogge, Free, esterified, and insoluble-bound phenolic acids. 1. Extraction and purification procedure, J. Agric. Food. Chem. 30 (1982) 330-334.

DOI: 10.1021/jf00110a028

Google Scholar

[44] T.D. Xuan, E. Tsuzuki, H. Terao, T.D. Khanh, Correlation between growth inhibitory exhibition and suspected allelochemicals (phenolic compounds) in the extract of alfalfa (Medicago sativa L.), Plant Prod. Sci. 6 (2003) 165-171.

DOI: 10.1626/pps.6.165

Google Scholar