
 

 
Abstract— The WebGL platform has been introduced based on 
the OpenGL ES 2.0 API. It allows scripts embedded in a web 
browser to have native access to GPU hardware. Now that more 
and more real-time systems are moving towards a cloud-based 
architecture, it becomes important to capitalize on existing tools 
to extend the biomedical imaging and visualization domain. One 
such tool that can enable ubiquitous biomedical imaging and 
visualization is the WebGL platform. Existing work relies on a 
multi-pass strategy. We extend the visualization using a single 
pass approach. This gives much better performance especially on 
the mobile platforms where every additional texture access is 
costly. Quantitative evaluation reveals that the proposed 
algorithm outperforms the existing algorithm by a consistent 2x 
speedup not only on desktop platforms but also on the mobile 
platforms. Current mobile phones and tablets have limited 
support for dynamic loops thus, sampling rate cannot be changed 
dynamically and high quality renderings cannot be carried out. 
To circumvent these problems, we present the first 3D texture 
slicer. Since 3D texture slicing uses the rasterization hardware 
and support of the rasterizer is pervasive, we can not only modify 
the sampling rate but also carry out advanced effects. The design 
of our approach and extensive experiments are presented in this 
paper which proves the effectiveness of the proposed approach 
for pervasive biomedical data processing and visualization.   
 

Index Terms— Ubiquitous computing, Biomedical imaging, 
Data visualization, Biomedical image processing, Computer 
graphics  

I. INTRODUCTION 

HE healthcare scenario has changed to accommodate 
better clinical decision and higher patient satisfaction. It 

has moved from traditional one-point contact to a 
conglomeration of multidisciplinary people working together 
to obtain best results. With the availability of internet, we 
have seen a large number of hospitals using integrated Health 
Information Systems (HIS) which help them to maintain a 
seamless flow of patient’s information, insurance, clinical 
data, etc. between different departments. However, currently 
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these systems are often synonymous with filling innumerable 
forms and storing bulky files filled with patient information. 
In the instrumental examinations, such as Computed 
Tomography (CT) and Magnetic Resonance Imaging (MRI), 
the resulting images and documents have to be processed 
offline. Ambiguous and incomplete data, or data 
fragmentation, often lead to lack of overview, and these 
drawbacks may impede the continuity and quality of care. 
Moreover, these information systems are limited to the niche 
of a hospital or its subsidiaries. 

In a web-based system, the medical information and tools 
available on an integrated platform can be accessed by 
different people at any geographical location at any point of 
time. There are various portals which handle information 
transfer and storage but little work has been done on data 
processing. Online availability of biomedical image 
processing and visualization would improve accessibility of 
remotely located tools and also maintain congruency of 
processes applied by different users. 

Biomedical image visualization is based on identification of 
appropriate features to assist practitioners to differentiate one 
type of objects, e.g. tumorous tissues, from another, according 
to their morphological characteristics. Challenges to graphics 
researchers are mainly in supporting standard and accurate 
assessment of images using combined set of filters present at 
one location. Currently, sophisticated volume rendering and 
feature visualization programs are only available on a stand-
alone workstation. Data processing capability on a mobile 
device such as a smart phone is very limited.  

In this connection, WebGL is proposed as a new standard 
for plugin-less high quality high performance graphics in a 
web browser. It is a cross-platform, immediate mode royalty-
free web standard for a low-level 3D graphics API. Since 
WebGL is based on the OpenGL ES 2.0 API which is a subset 
of OpenGL for embedded devices, it uses the same shader 
language framework as the desktop OpenGL. Before WebGL, 
most of the 3D content was available only through plugins for 
the web browsers which often had compatibility issues and 
were not a write-once-run-everywhere solution. Moreover, 
such plugins had to be manually installed before any 3D 
content could be viewed. With WebGL, applications can now 
have native access to the graphics hardware through the well 
established OpenGL ES API without any plugin [1]. 

For application development, WebGL is exposed through 
the HTML5 canvas element as a collection of Document 

Movania Muhammad Mobeen, Lin Feng,                                                    
Nanyang Technological University, Singapore 

Mobile Visualization of Biomedical Volume 
Datasets 

T

Journal of Internet Technology and Secured Transactions (JITST), Volume 1, Issue 2, June 2012 

Copyright © 2012, Infonomics Society 52



 

Object Model (DOM) interfaces. It is entirely shader-based 
API bringing 3D to the web, and implemented right into the 
browser. Major browser vendors such as Apple (Safari), 
Google (Chrome), Mozilla (Firefox), and Opera (Opera) are 
members of the WebGL Working Group. WebGL uses the 
low-level javascript API to gain access to the power of a 
mobile device's graphics hardware such as GPU from within 
scripts on web pages.  It makes it possible to create 3D 
graphics that update in real-time, run in the browser, and can 
also be run in any OpenGL ES 2.0 compliant mobile device.  
Currently, it is available in a number of smart phones and 
tablet computers from numerous vendors. 

II. PREVIOUS WORK 

GPU-based direct volume rendering has been used for 
visualization of medical and scientific datasets. Numerous 
approaches have been proposed in the literature [2], [3], and 
for a more recent work, the SIGGRAPH course notes in [4]. 
Initial GPU-based approaches focused on using the fragment 
shader pipeline in a multi-pass approach [5] which renders 
front and back faces of a unit color cube. Then, rays are 
generated using textures rasterized in the first pass as lookups 
in a fragment shader. Thanks to its simplicity, this still 
remains as an effective approach for GPU ray casting. 

With the introduction of loops in shaders in the Shader 
Model 3, a single-pass approach was pioneered by Stegmaier 
et al. [6]. Similar to other fragment shader based approaches, 
first a full screen quad is rendered on screen in order to invoke 
the fragment shader. Then, the ray casting fragment shader is 
applied. Using the assigned texture coordinates, the ray 
directions for sampling of volume are determined. Finally, the 
volume is traversed front-to-back. Such a single-pass 
approach shows great potential although more improvement is 
needed, especially for mobile devices where every additional 
texture lookup degrades performance considerably. 

The versatility of GPU ray casting allows ray functions to 
be efficiently implemented with both front-to-back and back-
to-front variants, and to be modified in real-time in the 
fragment shader. This helps to accommodate various ray 
functions like maximum intensity projection (MIP), maximum 
intensity difference accumulation (MIDA) [7], composite 
accumulation, psuedo-isosurface rendering [8] etc. in real-
time without additional modifications. 

The WebGL API was introduced only recently. In the 
medical domain, there has been some work using the new 
API, including the Google Body project [10]. However, there 
are very few reports on using WebGL for volume rendering. 
The only relevant work was reported in [9]. The authors 
presented an algorithm for extracting the 2D slice from the 2D 
flat texture layout. This approach uses the Kruger and 
Westermann’s multi-pass approach [5] of rendering the front 
and back faces of a unit color cube in an offscreen buffer. 
Then, it uses these to generate the ray directions for sampling 
through the volume dataset in the fragment shader. The multi-
pass approach for GPU ray casting requires additional textures 

in the first pass. The ray direction is calculated in the fragment 
shader in the second pass. For the mobile platforms, each 
additional texture fetch degrades the performance 
significantly. In addition, their method suffers from visible 
artifacts at the unit color cube edges due to rasterization. 
Moreover, it uses a fixed transfer function which is loaded 
from an image, which limits the flexibility in an interactive 
rendering session on a mobile device. This motivated the 
development of a single-pass approach for GPU ray casting in 
WebGL [13]. 

We present two volume rendering algorithms using the 
WebGL platform for implementing medical image 
visualization on the mobile devices. A remarkable advantage 
of our approach is that it can run directly on most embedded 
and mobile devices. In the next section, we will particularly 
introduce a novel single-pass rendering pipeline, in contrast to 
the current WebGL volume rendering systems which use the 
multi-pass algorithms. The new pipeline can be implemented 
efficiently on the embedded GPU in the mobile device, 
enabling real-time visualization of high-resolution volumetric 
datasets. We will also extend the pseudo-color shading by 
using customable transfer function widgets, which enables 
interactive feature enhancement in rendering.  

Currently, the mobile devices and smart phones have 
limited support for shaders. Hence, variable length loops are 
limit to a compile time constant. This limits the volume 
rendering algorithms since, advance shading effects cannot be 
carried out. Moreover, the sampling rate cannot be adaptively 
modified without recompilation of the shaders. To circumvent 
these problems, we propose the first 3D texture slicer for 
WebGL. Since texture slicing relies on the rasterizer hardware 
and because the support for the rasterizer hardware is better 
on mobile platforms, we can not only carry out advanced 
shaders but also change the sampling rate at runtime. This 
enables us to carry out advanced shading [14] as detailed in 
the later section. 

The rest of the paper is organized as follows. Section III 
details the development of our system on the WebGL platform 
which includes both the single pass ray caster and the 3D 
texture slicer. Section IV presents the experimental results and 
performance assessments we carried out on both desktop and 
mobile platforms. Finally, section V discusses and concludes 
this paper.   

III. SYSTEM DEVELOPMENT 

WebGL is an extension of the HTML5 canvas element. 
This element provides fast and high performance graphics 
constructs for rendering high quality graphics in a browser 
window. For 2D graphics, this is usually accomplished by 
using a 2D rendering context called the 
CanvasRenderingContext2D. For 3D rendering, the canvas 
element provides a rendering context, called the 
WebGLRenderingContext which provides the OpenGL ES 2.0 
functionalities.  Both of these API are controlled through 
javascript. 
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A. WebGL supported system architecture 

Internally, the OpenGL context makes calls to the graphics 
hardware directly through the graphics driver (see Fig. 1). 
Therefore, there have been several debates on the security 
issues and vulnerabilities of the WebGL API. While such a 
low level access is necessary for high performance graphics, 
this also allows the client program to have access to the 
hardware directly which could potentially be used for an 
attack. Nevertheless, such security issues have been addressed 
by the new specifications and more security features are being 
introduced with each new specification update. 

In the case of WebGL, a rendering context is obtained from 
the HTML5 canvas element. This is usually accomplished 
using javascript code. Most of the current WebGL 
implementations provide an experimental WebGL context 
which does not comply with the full WebGL specifications. In 
the new specifications v 1.0.1, however, the implementations 
are now required to provide a pure non-experimental WebGL 
context. The returned gl context can then be used to call any 
OpenGL ES 2.0 API function [1]. 

With the type-less javascript API, the object type and their 
memory management is handled by WebGL. This has some 
performance implications especially due to the strongly typed 
nature of OpenGL. WebGL has introduced special typed 
arrays that correspond to the native types used by OpenGL. 
This allows proper argument passing to the native OpenGL 
call from WebGL. With newer browser release, their 
javascript engine performance improves and becomes 
comparable to a native call as in C/C++ [1]. 

B. Volume Rendering 

The following sections list the two volume rendering 
approaches implemented in our WebGL based volume 
rendering system. The framework of our WebGL based single 
pass volume renderers is shown in Fig. 2. The volume dataset 
is first stored into the GPU texture memory. Usually, this is 
carried out by using 3D textures. Since WebGL is based on 
the OpenGL ES 2.0 API which is a restricted subset of the 
desktop OpenGL, there are some functionalities missing, in 
particular, there is no 3D texture which is a crucial 
requirement for volume rendering. As shown in the figure, in 
our design, this limitation is circumvented by tiling each slice 
of the 3D texture into a 2D flat texture layout [9].  

The volume rendering approach is based on an optical 
model to approximate the emission/absorption characteristics 
of the participating medium. The volume rendering integral 
models the emission, absorption and transmission properties 
that map the physical attributes stored in the 3D density 
function. The emission absorption model is given as 

dsDsFsqIDsFDI
D

s

),()(),()(
0

00 
            (1) 




b

a
dtt

ebaF
)(

),(


 
where, I0 is the background light intensity, F is the  

 

 
transparency function, q(s) is the source term (the illumination 
model used), I is the intensity leaving the volume, κ(t) is the 
extinction coefficient, D is the distance of the viewer from the 
volume and ∫κ(t)dt is the optical depth which gives the distance 
the light travels before it is absorbed. For a transparent 
material, the optical depth is small and for a more opaque 
material, it is large. 

Equation 1 only captures emission and absorption ignoring 
the scattering effects. Usually, single scattering is 
approximated using a local illumination model such as the 
Blinn Phong model. The normal for shading in this case is 

Application Layer

Operating System 

Web Browser

HTML5 Canvas

WebGL

Graphics Driver

Graphics Hardware

 
Figure 1. Hardware Design of WebGL 
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Figure 2. The dataflow for WebGL based volume 
renderer 
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estimated by evaluating the gradient at the current sample point 
using finite difference approximation. The volume rendering 
integral given in Eq. 1 cannot be solved analytically. Hence, 
numerical approximation is used by partitioning the integration 
domain into sub-intervals from s0 to D such that s0 < s1 < … < 
sn-1 < D. The integral is then approximated as, 
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Replacing F(si-1,si) with Ti and the right side integral that is 

∫q(s)F(s,si)ds with Ci, we get 
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This can be given with the following recursive expression 
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In practice however, the transparency term (Ti) is usually 
replaced by opacity (αi =1-Ti). 
 

1) Composite Rendering 
The physical model for volume rendering relies on 

modeling the interaction between light and the participating 
media. The composite rendering tries to approximate the 
volume rendering integral through finite difference 
approximation. Typically, this mode is implemented through 
front-to-back or back-to-front alpha compositing. The 
discretized volume rendering integral is iteratively computed 
using either front-to-back or back-to-front compositing 
depending on the direction the volume is viewed from. When 
front-to-back compositing is used, the iterations are given as 
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In the above equations, the terms Ci and αi are obtained 

from the transfer function. Replacing the term Ci+1 with Cdst 
and Ci with Csrc, αsrc=1-Ti and αdst =1-Ti+1, and reformulating, 
we get the conventional blending equation for front-to-back 
compositing 
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For back-to-front compositing, the direction of traversal is 

reversed. Hence, the iterations are given as 
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In this case, there is no need to explicitly store and 

calculate transparency. Replacing the term Ci-1 with Cdst and Ci 
with Csrc, αsrc=1-Ti and αdst =1-Ti-1, and reformulating, we get 
the conventional blending equation for back-to-front 
compositing 
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2)  Single-pass GPU Ray Casting 
When using GPU for ray casting, a unit cube is first 

rendered. Using the vertex shader, the clip space positions are 
estimated by multiplying the per-vertex positions with the 
modelview and projection matrices. During estimation of the 

clip space position, the vertex shader also outputs object space 
position for shading calculation. Following the vertex shader, 
using the connectivity information, the triangle is rasterized 
and the fragments are obtained. On each fragment, the 
fragment shader is invoked. Once the positions are obtained, 
rays are cast into the volume in the fragment shader. These 
rays are sampled and adjacent material values are used to 
reconstruct the original data, typically using trilinear 
interpolation.  

In our single-pass GPU ray caster, the bulk of the work for 
volume rendering takes place in the fragment shader. The 
shader is given in Listing 1. The vertex shader projects the 
vertices of a unit cube to clip space by multiplying them with 
the modelview and projection matrices. It also calculates the 
3D texture coordinates for sampling and stores the object 
space positions for shading calculation. 

The fragment shader gets the interpolated 3D texture 
coordinates and object space vertex positions. The current 
camera position (which is the eye ray’s origin) is passed in as 
a shader uniform variable (line 11-12 in Listing 1). Using this 
eye ray’s origin and the cube’s interpolated object space 
position, the ray directions are obtained (line 14). Before 
running the costly sampling loop, we introduce an 
optimization which checks the current ray against the 
bounding box of the unit cube (line 16). Only if the ray 
intersects the bounding box, the sampling loop is initiated 
(lines 19-28); otherwise, the current fragment is discarded 
(line 30). This gives significant performance boost especially 
on the mobile platforms.  

 

1 struct BBox { 
2    vec3 min, max; 
3 }; 
4 BBox getBBox(vec3 mn, vec3 mx) { 
5    BBox temp; 
6    temp.min = mn; 
7    temp.max = mx; 
8    return temp; 
9 } 
10 BBox bbox = getBBox(vec3(-0.5),vec3(0.5)); 
11 uniform vec3 eye_pos; //camera position 
12 varying vec3 pos; //interpolated from vertices 
 
13 void single_pass_raycaster() { 
14    ray_dir    = normalize(pos - eye_pos); 
15    frag_color = vec4(0.0); 
 
16    if(intersects(eye_pos,ray_dir,bbox)) { 
17       dir_step = ray_dir*steps; 
18       ray_pos  = pos; 
19       for(i=0;i<steps;i++) { 

    //sampling and classification 
20          sample = getSample(volume, ray_pos); 
21          value  = texture1D(lut, sample); 

    //compositing 
22          pre_alpha=value.a-(value.a* 

                        frag_color.a); 
23          frag_color.rgb +=pre_alpha*value.rgb; 
24          frag_color.a += pre_alpha; 
25          ray_pos += dir_step; //advance ray 
26          if(vec3(0)>ray_pos||ray_pos>vec3(1)) 
27             break;               
28       } 
29    } else { 
30       discard; 
31    } 
32    return frag_color; 
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33 } 

Listing 1. Shader for the single-pass GPU ray casting 
Depending on the current step size used and the total 

number of sampling points, a loop is initiated (line 19). In 
each iteration, the sample value is obtained by a lookup from 
the volume dataset (line 20). To the interpolated the value, the 
transfer function is applied (line 21) and then the classified 
value is accumulated using the current compositing scheme 
(line 22-24). The ray steps forward in the current viewing 
direction (line 25). The whole process is repeated until the ray 
exits the whole volume dataset (line 26-27). Finally, the 
composited color is returned as the fragment color (line 32). 

With the versatility of the single-pass ray caster, we can 
modify the ray function instantly. Effects like maximum 
intensity projection (MIP), maximum intensity difference 
accumulation (MIDA), average, composite, and isosurface 
rendering modes can be realized easily thanks to the efficiency 
of the single-pass ray caster. 

 

3) Isosurface Rendering with Adaptive Refinement 
The isosurface can be given using the following implicit 

function 
})(|{ kxxS    

where, k is a constant and φ is called the embedding. The 
locality of a point p with respect to the isosurface depends on 
the value of φ(p). If the value is less than k, the point is below 
the isosurface. If the value is greater than k, the point is above 
the isosurface. The shading calculation of the isosurface 
requires the evaluation of the normal vector. This normal 
vector is obtained from the normalized gradient of φ which is 
calculated as follows 
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For volume dataset, the gradient is estimated using finite 
difference approximations such as centered finite difference as 
follows 
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In case of isosurface rendering, only lines (22-24) are 

modified. Now instead of compositing, the current and the 
next sample’s classified value is checked to see if the values 
are close to the given isovalue. If they are within an epsilon 
range of the isovalue, the normal is estimated using the 
centered finite difference approximation and then the shading 
is calculated using Blinn Phong shading model.  

 

4) Combining Composite and Isosurface Rendering 
We further developed a new hybrid rendering mode. This 

mode allows us to combine the result of multiple ray 
functions. For instance, we can combine the isosurface 
rendering to the composite rendering. The conventional 
isosurface is evaluated using a condition to test whether the 
current sample value is closer to the required isovalue. This 
results in an image containing a lot of sampling artifacts 
especially in regions where the isosurface blends with the 
background color, as shown by a rendering experiment in Fig. 
3 (a). Moreover, since the isosurface is combined with the 

background color, the colors bleed on the isosurface, making 
its identification difficult. 

In our solution, we eliminate the conditional test. Instead, 
we use blended isosurfaces which are generated using an 
alpha transfer function. This allows the isosurfaces to be 
blended naturally with the existing ray function. This avoids 
flickering artifacts in isosurface evaluation, because when the 
next ray step composites the current sample value, the 
isosurface loses its color.  In addition, the resulting isosurface 
will not suffer from color bleeding artifacts, and therefore the 
isosurface color is sustained, as can been verified by the 
rendering experiment in Fig. 3 (b). 

 
5) Real-time Transfer Function Modification 

For effective visualization, we provide a transfer function 
widget that can adjust the current transfer function as required 
in real-time. This widget was written entirely in the client side 
javascript.  

 
Figure 3. Ray casting for the Manix dataset: (a) 
without ray function blending, and (b) with ray 
function blending. (Note that both renderings used the 
same transfer function, but the color bleeding and 
sampling artifacts are removed in our ray function 
blended single-pass ray casting.)  
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The user can adjust the transfer function color and the 

current samples alpha value by assigning color and alpha 
values to specific keys. The X-axis corresponds to the scalar 
value (which for our case varies from 0 to 255 since we used 
8-bit datasets) and the Y-Axis corresponds to the transparency 
value (which varies in the 0-1 range). Such a widget is shown 
in Fig. 4. 

When the user modifies the transfer function by adding a 
new key or moving an existing key, first the new positions of 
all of the keys are determined. These keys are then sorted 
based on the intensity value they represent. Finally, the colors 
are interpolated and then the transfer function texture is 
updated. For efficiently modifying the transfer function 
texture, the gl.texSubImage2D function is used which directly 
modifies the texture data without creating a new texture. The 
whole process of transfer function modification is detailed in 
Listing 2. Each transfer function key contains a data-value 
pair with the data being intensity and the value being a color 
value containing red, green, blue and alpha components. 

 
proc updateTF() 
   //data contains the output transfer func. data   
   sort the keys on the intensity 
   for i=0 to keys.length 
      dColor = keys[i+1].rgba–keys[i].rgba; 
      dIndex = keys[i+1].intensity - 
               keys[i].intensity; 
      delta  = dColor/dIndex; 
      for j=keys[i].intensity+1 to     
            keys[i+1].intensity 
         data[j] = data[j] + delta; 
      end for 
   end for 
end proc 
Listing 2. The transfer function modification pseudocode 

IV. EXPERIMENTAL RESULTS AND PERFORMANCE 

ASSESSMENT 

The performance of the proposed algorithm was evaluated 
using a few experiments on two desktop platforms and two 
mobile platforms. Two different desktop systems were used 
which include the Dell Precision T7500 workstation (referred 
to as SYSTEM1) with a 2.27 GHz Intel Xeon CPU with 4 GB 
of RAM. This machine is equipped with an NVIDIA Quadro 
FX 5800 GPU with 4096 MB of dedicated video memory.  

The second platform is a Dell Alienware M15x laptop 
(referred to as SYSTEM2) with an Intel Core i7 CPU and an 
NVIDIA GeForce 260M GPU. In addition, we also carried out 
experiments on two mobile platforms, an ACER Iconia A500 
Tablet (referred to as MOBILE1), 1GHz dual-core Cortex A9 
processor with an NVIDIA Tegra 2 GPU and a Samsung 
Galaxy SII GT-I9100 (referred to as MOBILE2), dual-core 
1.2 GHz Cortex-A9 mobile phone with Mali-400MP GPU. 
Both of these mobile platforms ran the Google Android 
operating system. 

For thorough evaluation, four 8-bit datasets were used in 
these experiments, namely Aorta (256×256×97), Skull 
(256×256×256), CTHead (256×256×256) and Manix dataset 
(256×230×256). These datasets were stored on our local web 
server. The datasets were stored into a 2D flat texture layout 
with an image resolution of 4096×4096. The Aorta dataset 
contained 96 slices which were stored in a 2D layout of 
10×10. The other datasets contained 256 slices which were 
stored in a 2D layout of 16×16. 

A. Comparison of Single-Pass Ray Caster to Multi-Pass Ray 
Caster on Desktop Platforms 

The first set of experiments was conducted on both 
SYSTEM1 and SYSTEM2 to compare the performance of our 
single pass GPU ray caster against the current state-of-the-art 
WebGL ray caster [9]. For this experiment, we used the 
composite rendering mode with transfer function (shown in 
Fig. 4). All of the rendering and startup settings (for example 
the distance of the volume from the camera) were same for 
both of the WebGL ray casters. The tests were carried out on 
the canvas resolutions of 1024×1024 pixels. The ray sampling 
steps for this experiment were 100. These results are given in 
Table 1. The rendering results on the desktop platform in the 
Google Chrome Web browser are given in Fig. 5. 

As can be seen from the statistics in Table 1, our proposed 
single pass ray caster consistently outperforms the multi-pass 
ray caster. The reason for this speedup in our proposed 
algorithm is the significantly less number of texture fetches 
and more efficient ray traversal. The multi-pass approach of 
[9] suffers from visual artifacts at the cube edges. Since we do 
not require any additional lookup (for example the multi-pass 
approach requires the front and back textures for extracting 
the ray direction), our performance remains consistent. 

B. Comparison of Single-Pass Ray Caster to Multi-Pass Ray 
Caster on Mobile Platforms 

The second set of experiments was carried out on the 
mobile platforms, for estimating the performance of the 
proposed GPU based single pass ray casting algorithm in 
WebGL on the mobile platforms. For this experiment, 
composite function without transfer function was used with 
100 sampling steps. The reason we used 100 sampling steps is 
because we found out that the maximum steps for a variable 
loop supported on the tablet were 100. Any loop size larger 
than this value timed out the shader compiler and the tablet 
could not run the shader. 
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Figure 4. The transfer function widget for transfer 
function assignment in WebGL 
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The canvas resolution for this experiment was 1024×1024. 
The datasets were down sampled to 1024×1024 resolution. 
This was due to the memory limitations on the mobile 
platforms. The results are given in Table 2 and the screenshots 
from the mobile platforms are shown in Fig. 6.  

As can be seen, the performance trend we observed on the 
desktop platforms (shown in Table 1) is followed in this case 
as well. Our single pass ray caster out performs the multi-pass 
ray caster by almost 2x. We get much better performance even 
though all of the rendering settings are same. The reason for 
better performance in the single-pass ray caster seems to be 
due to the significantly less number of texture fetches as 
compared to the multi-pass approach. We expect the 
upcoming hardware to relax the variable length loop limit 
further which would improve the performance of this 
algorithm considerably. 

 
 

Dataset Hardware 

Frame rate (in frames per second) 

Multi-pass ray 
caster [9] 

Our proposed 
single-pass  
ray caster 

Aorta 

SYSTEM1 72.3-90.7 90.8-90.9 

SYSTEM2 32.0-46.4 77.8-80.8 

CTHead 
SYSTEM1 52.3-80.7 89.4-90.9 

SYSTEM2 31.6-45.0 73.1-77.5 

Skull 
SYSTEM1 54.5-81.2 90.7-90.8 

SYSTEM2 31.0-44.7 75.6-77.8 

Table 1. Comparison of performance of our proposed 
single pass GPU ray caster against the current state-of-
the-art GPU ray caster for WebGL for 100 sampling steps 
on the desktop platforms. 

 

 
 

Dataset Hardware 

Frame rate (in frames per second) 

Multi-pass ray 
caster [9] 

Our proposed 
single-pass  
ray caster 

512×512 1024×1024 512×512 1024×1024 

Aorta 

MOBILE1 0.5 0.1 0.9-1.0 0.2-0.3 

MOBILE2 1.5-1.8 0.5 4.4-4.6 1.3-1.6 

CTHead 
MOBILE1 0.5 0.1-0.2 1.0 0.2-0.3 

MOBILE2 1.8-1.9 0.5 3.3-3.6 1.0-1.1 

Skull 
MOBILE1 0.5 0.1-0.2 1.0 0.2-0.3 

MOBILE2 1.4-1.5 0.4-0.5 3.3-3.5 0.9-1.0 

Table 2. Comparison of performance of our proposed 
single pass GPU ray caster against the current state-of-
the-art GPU ray caster for WebGL for a sampling rate of 
0.01 (100 sampling points) on the mobile platforms 
 

C. Performance of 3D Texture Slicer on Desktop Platforms 

In the third set of experiments, we evaluated the 
performance of 3D texture slicing on the desktop platforms. 
There were two rendering modes used in this experiment, the 
composite (as shown in Fig. 5 (a-c)) and the composite with 
shading mode (as shown in Fig. 5 (d-f)) which calculated the 
normal for shading by on demand gradient estimation using 

 
 

(a) (d) 

 
(b) (e) 

  

(c) (f) 
Figure 5. Rendering results from the proposed GPU-
based single-pass ray casting on WebGL showing (a,d) 
the Aorta dataset, (b,e) the CTHead dataset, and (c,f) 
the Skull dataset. Figures (a-c) are generated using 
single pass ray caster with 256 sampling steps and 
composite rendering mode whereas Figures (d-f) are 
generated using 3D texture slicer with 512 sampling 
points and composite with shading rendering mode 

 
Figure 6. WebGL compliant volume rendering of 3D 
medical dataset implemented on the stand-alone 
desktop (left) and two mobile platforms: ACER Iconia 
A500 tablet (middle) and the Samsung Galaxy SII GT-
I9100 mobile phone (right) 
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centered finite difference. For all of the experiments on these 
platforms, a common canvas resolution of 1024 × 1024 pixels 
was used. The datasets were kept at 2 world units from the 
camera so that they were visible entirely on the screen. In 
addition to remove any biases due to a specific viewing 
direction, the datasets were rotated 720 degrees. The frame 
rates varied in a small range. There were three web browsers 
used in this experiment, Opera Next v 12.00 alpha, Google 
Chrome v 17.0.963.56 and Mozilla Firefox v 11.0 beta. 

The Opera WebGL implementation uses the OpenGL API 
whereas both Chrome and Firefox WebGL implementations 
emulate the OpenGL ES API using DirectX 9 though the 
Angle engine. These WebGL implementations are named 
ChromeDX and FirefoxDX respectively. To disable the Angle 
rendering both Chrome and Firefox provide configuration 
settings. For Chrome, the –use-gl=desktop startup switch 
provides this whereas for Firefox, the configuration is 
manually set by setting the prefer-native-gl and force-enabled 
flags to true in the about:config configuration settings.  

We named these configurations as ChromeGL and 
FirefoxGL in the experiments. The results for 256 sampling 
steps are presented in Table 3. We can see that there are 
significant differences in performance on different browsers. 
In our experiments, Google Chrome and Mozilla Firefox 
performed the best for all of the experiments. 

 

Dataset 
Web 

browser 

Frame rate (in frames per second) 

Composite Composite+Shading 

Aorta 

Opera 80.1-90.0 66.9-74.6 

ChromeGL 96.3-97.5 60.6-70.9 

ChromeDX 95.8-97.7 60.8-70.9 

FirefoxGL 54.8-59.8 38.3-43.3 

FirefoxDX 94.9-100.0 65.2-75.2 

CTHead 

Opera 74.0-76.1 24.9-26.8 

ChromeGL 68.7-71.1 26.2-30.7 

ChromeDX 68.9-71.4 26.7-30.1 

FirefoxGL 41.7-43.5 21.6-24.0 

FirefoxDX 76.9-82.3 28.5-31.2 

Skull 

Opera 73.5-80.1 24.2-26.9 

ChromeGL 71.6-74.4 26.7-31.4 

ChromeDX 70.9-74.8 26.9-31.7 

FirefoxGL 32.4-43.4 21.1-24.8 

FirefoxDX 80.8-85.5 28.3-33.1 

Table 3. The performance results for 3d texture slicing in 
WebGL for a sampling rate of 0.0039 (256 sample points) 
on SYSTEM1 

D. Comparison of Single-pass Ray Caster to 3D Texture 
Slicer on Desktop Platforms 

The fourth set of experiments was conducted on both 
SYSTEM1 and SYSTEM2 to compare the performance of the 
single pass GPU ray caster against the 3D texture slicer in 
WebGL on the Google Chrome browser. For this experiment, 
the composite rendering mode with transfer function was 
used. The tests were carried out on the canvas resolutions of 
1024×1024 pixels.  

The ray sampling steps as well as the total texture slices 
were both 256 and the volume was placed 2 units from the 

camera so that it covered the whole screen. These results are 
given in Table 4. As can be seen from the statistics in Table 4, 
the performance of 3D texture slicer is almost 1.5x better as 
compared to the single pass ray caster. 

E. Comparison of Single-pass Ray Caster to 3D Texture 
Slicer on Mobile Platforms 

In the final set of experiments, we compared the 
performance of 3D texture slicer and single pass GPU ray 
caster on the mobile platforms. The canvas resolution was 
1024×1024. For this experiment, composite function without 
transfer function was used. The total sampling steps used were 
100 for both texture slicing and GPU ray casting because the 
fragment shader could not link on the tablet for variable loop 
size larger than 100. These results are given in Table 5. 

As can be seen, we were able to obtain interactive frame 
rates even on a mobile platform. The 3D texture slicer 
outperformed the GPU ray caster by almost 2x. The results 
concluded that performance wise, for volume rendering, 3D 
texture slicing is consistently better both on the desktop as 
well as the mobile platforms.  

 

Dataset Hardware 
Frame rate (in frames per second) 

Ray caster 3D texture slicer 

Aorta 

SYSTEM1 63.6-79.4 98.2-98.7 

SYSTEM2 33.5-35.2 51.3-55.2 

CTHead 
SYSTEM1 39.3-47.5 54.9-59.4 

SYSTEM2 16.9-18.4 29.2-32.5 

Skull 
SYSTEM1 33.7-41.0 58.4-61.8 

SYSTEM2 14.2-19.5 30.6-35.5 

Table 4. Comparison of performance of the single pass 
GPU ray  caster against the proposed 3D texture slicer for 
WebGL on the desktop platforms 
 

Dataset Hardware 
Frame rate (in frames per second) 

Ray caster 3D texture slicer 

Aorta 

MOBILE1 1.2-1.3 2.3-2.5 

MOBILE2 1.3-1.6 3.8-5.6 

CTHead 
MOBILE1 0.2-0.3 1.9-2.4 

MOBILE2 1.0-1.1 4.3-5.1 

Skull 
MOBILE1 0.2-0.3 2.4-2.5 

MOBILE2 0.9-1.0 4.8-5.1 

Table 5. Comparison of performance of 3D texture slicer 
and GPU ray casting for a sampling rate of 0.01 (100 
sample points) on mobile platforms 

V. DISCUSSION AND CONCLUSION 

We have presented the first single-pass ray caster for 
WebGL. In contrast to the current state-of-the-art for volume 
rendering in WebGL [9], our implementation is able to handle 
dynamic transfer functions even on mobile platforms. A 
quantitative evaluation revealed that the proposed algorithm 
outperforms the existing WebGL ray caster by up to 2x on 
both stand-alone and mobile platforms. Such high 
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performance is helpful especially on the mobile platforms 
where the texture accesses are too costly. With the new mobile 
devices, we expect more support in the upcoming WebGL 
implementations for more advanced shaders.  

Currently, due to the limitation in the loop iteration for 
dynamic loops on the mobile platforms, it is not possible to 
implement advanced shaders. Therefore, to have high 
performance volume rendering especially on the mobile 
platform, we presented the first 3D texture slicer for WebGL. 
This allows us to render volumes with higher sampling rates 
on the mobile platforms. The experimental results have shown 
that, performance wise, 3D texture slicer performs better as 
compared to the single-pass ray caster.  

While both of them are suitable for WebGL 
implementation, the choice is subject to a performance/quality 
trade off. Although, the limited support for variable loops in 
the current WebGL implementations on the mobile platforms 
prevents us from introducing more optimization in the single-
pass ray caster, we expect that the upcoming hardware will 
relax such restrictions. This will enable the proposed single-
pass ray caster to perform better on the upcoming mobile 
platforms.  

We are confident on the results obtained from the 
experiments and would like to expand the work to address 
specific applications such as rapid prototyping of biomedical 
models [10], coupling between deformation  and rendering of 
volumetric models [11,12,19] as well as confocal 
endomicroscopy [15]. This will enable the ubiquitous 
visualization and processing capabilities in a wide application 
domain. 

In conclusion, thanks to the wide availability of the WebGL 
architecture, we have successfully developed a ubiquitous 
volume renderer for visualization of the biomedical datasets 
directly on the mobile platforms. With new and improved 
hardware features in the upcoming mobile devices, we expect 
these advanced features to be exposed through WebGL. This 
would allow a richer interactive visualization experience. 
Moreover, with new and improved mobile GPUs in the 
coming generations, we expect our algorithm to perform even 
better on these newer devices. WebGL is indeed a promising 
platform for high-quality mobile applications. We can carry 
out more sophisticated renderings, for example, dynamic 
shading using real-time texture lookups in 3D texture slicing 
even on the mobile platforms. Such effects are impossible in 
the current state-of-the-art ray caster. 
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