

Abstract— The WebGL platform has been introduced based on
the OpenGL ES 2.0 API. It allows scripts embedded in a web
browser to have native access to GPU hardware. Now that more
and more real-time systems are moving towards a cloud-based
architecture, it becomes important to capitalize on existing tools
to extend the biomedical imaging and visualization domain. One
such tool that can enable ubiquitous biomedical imaging and
visualization is the WebGL platform. Existing work relies on a
multi-pass strategy. We extend the visualization using a single
pass approach. This gives much better performance especially on
the mobile platforms where every additional texture access is
costly. Quantitative evaluation reveals that the proposed
algorithm outperforms the existing algorithm by a consistent 2x
speedup not only on desktop platforms but also on the mobile
platforms. Current mobile phones and tablets have limited
support for dynamic loops thus, sampling rate cannot be changed
dynamically and high quality renderings cannot be carried out.
To circumvent these problems, we present the first 3D texture
slicer. Since 3D texture slicing uses the rasterization hardware
and support of the rasterizer is pervasive, we can not only modify
the sampling rate but also carry out advanced effects. The design
of our approach and extensive experiments are presented in this
paper which proves the effectiveness of the proposed approach
for pervasive biomedical data processing and visualization.

Index Terms— Ubiquitous computing, Biomedical imaging,
Data visualization, Biomedical image processing, Computer
graphics

I. INTRODUCTION

HE healthcare scenario has changed to accommodate
better clinical decision and higher patient satisfaction. It

has moved from traditional one-point contact to a
conglomeration of multidisciplinary people working together
to obtain best results. With the availability of internet, we
have seen a large number of hospitals using integrated Health
Information Systems (HIS) which help them to maintain a
seamless flow of patient’s information, insurance, clinical
data, etc. between different departments. However, currently

Manuscript received September 16, 2012. This work is partially supported

by two research grants, M408020000 from Nanyang Technological University
and M4080634.B40 from Institute for Media Innovation, NTU, and a grant
MOE2011-T2-2-037 from Ministry of Education, Singapore.

Movania Muhammad Mobeen is with the School of Computer
Engineering, Nanyang Technological University, Singapore, e-mail:
mova0002@ e.ntu.edu.sg.

Lin Feng is with the School of Computer Engineering, Nanyang
Technological University, Singapore, e-mail: asflin@ntu.edu.sg.

these systems are often synonymous with filling innumerable
forms and storing bulky files filled with patient information.
In the instrumental examinations, such as Computed
Tomography (CT) and Magnetic Resonance Imaging (MRI),
the resulting images and documents have to be processed
offline. Ambiguous and incomplete data, or data
fragmentation, often lead to lack of overview, and these
drawbacks may impede the continuity and quality of care.
Moreover, these information systems are limited to the niche
of a hospital or its subsidiaries.

In a web-based system, the medical information and tools
available on an integrated platform can be accessed by
different people at any geographical location at any point of
time. There are various portals which handle information
transfer and storage but little work has been done on data
processing. Online availability of biomedical image
processing and visualization would improve accessibility of
remotely located tools and also maintain congruency of
processes applied by different users.

Biomedical image visualization is based on identification of
appropriate features to assist practitioners to differentiate one
type of objects, e.g. tumorous tissues, from another, according
to their morphological characteristics. Challenges to graphics
researchers are mainly in supporting standard and accurate
assessment of images using combined set of filters present at
one location. Currently, sophisticated volume rendering and
feature visualization programs are only available on a stand-
alone workstation. Data processing capability on a mobile
device such as a smart phone is very limited.

In this connection, WebGL is proposed as a new standard
for plugin-less high quality high performance graphics in a
web browser. It is a cross-platform, immediate mode royalty-
free web standard for a low-level 3D graphics API. Since
WebGL is based on the OpenGL ES 2.0 API which is a subset
of OpenGL for embedded devices, it uses the same shader
language framework as the desktop OpenGL. Before WebGL,
most of the 3D content was available only through plugins for
the web browsers which often had compatibility issues and
were not a write-once-run-everywhere solution. Moreover,
such plugins had to be manually installed before any 3D
content could be viewed. With WebGL, applications can now
have native access to the graphics hardware through the well
established OpenGL ES API without any plugin [1].

For application development, WebGL is exposed through
the HTML5 canvas element as a collection of Document

Movania Muhammad Mobeen, Lin Feng,
Nanyang Technological University, Singapore

Mobile Visualization of Biomedical Volume
Datasets

T

Journal of Internet Technology and Secured Transactions (JITST), Volume 1, Issue 2, June 2012

Copyright © 2012, Infonomics Society 52

Object Model (DOM) interfaces. It is entirely shader-based
API bringing 3D to the web, and implemented right into the
browser. Major browser vendors such as Apple (Safari),
Google (Chrome), Mozilla (Firefox), and Opera (Opera) are
members of the WebGL Working Group. WebGL uses the
low-level javascript API to gain access to the power of a
mobile device's graphics hardware such as GPU from within
scripts on web pages. It makes it possible to create 3D
graphics that update in real-time, run in the browser, and can
also be run in any OpenGL ES 2.0 compliant mobile device.
Currently, it is available in a number of smart phones and
tablet computers from numerous vendors.

II. PREVIOUS WORK

GPU-based direct volume rendering has been used for
visualization of medical and scientific datasets. Numerous
approaches have been proposed in the literature [2], [3], and
for a more recent work, the SIGGRAPH course notes in [4].
Initial GPU-based approaches focused on using the fragment
shader pipeline in a multi-pass approach [5] which renders
front and back faces of a unit color cube. Then, rays are
generated using textures rasterized in the first pass as lookups
in a fragment shader. Thanks to its simplicity, this still
remains as an effective approach for GPU ray casting.

With the introduction of loops in shaders in the Shader
Model 3, a single-pass approach was pioneered by Stegmaier
et al. [6]. Similar to other fragment shader based approaches,
first a full screen quad is rendered on screen in order to invoke
the fragment shader. Then, the ray casting fragment shader is
applied. Using the assigned texture coordinates, the ray
directions for sampling of volume are determined. Finally, the
volume is traversed front-to-back. Such a single-pass
approach shows great potential although more improvement is
needed, especially for mobile devices where every additional
texture lookup degrades performance considerably.

The versatility of GPU ray casting allows ray functions to
be efficiently implemented with both front-to-back and back-
to-front variants, and to be modified in real-time in the
fragment shader. This helps to accommodate various ray
functions like maximum intensity projection (MIP), maximum
intensity difference accumulation (MIDA) [7], composite
accumulation, psuedo-isosurface rendering [8] etc. in real-
time without additional modifications.

The WebGL API was introduced only recently. In the
medical domain, there has been some work using the new
API, including the Google Body project [10]. However, there
are very few reports on using WebGL for volume rendering.
The only relevant work was reported in [9]. The authors
presented an algorithm for extracting the 2D slice from the 2D
flat texture layout. This approach uses the Kruger and
Westermann’s multi-pass approach [5] of rendering the front
and back faces of a unit color cube in an offscreen buffer.
Then, it uses these to generate the ray directions for sampling
through the volume dataset in the fragment shader. The multi-
pass approach for GPU ray casting requires additional textures

in the first pass. The ray direction is calculated in the fragment
shader in the second pass. For the mobile platforms, each
additional texture fetch degrades the performance
significantly. In addition, their method suffers from visible
artifacts at the unit color cube edges due to rasterization.
Moreover, it uses a fixed transfer function which is loaded
from an image, which limits the flexibility in an interactive
rendering session on a mobile device. This motivated the
development of a single-pass approach for GPU ray casting in
WebGL [13].

We present two volume rendering algorithms using the
WebGL platform for implementing medical image
visualization on the mobile devices. A remarkable advantage
of our approach is that it can run directly on most embedded
and mobile devices. In the next section, we will particularly
introduce a novel single-pass rendering pipeline, in contrast to
the current WebGL volume rendering systems which use the
multi-pass algorithms. The new pipeline can be implemented
efficiently on the embedded GPU in the mobile device,
enabling real-time visualization of high-resolution volumetric
datasets. We will also extend the pseudo-color shading by
using customable transfer function widgets, which enables
interactive feature enhancement in rendering.

Currently, the mobile devices and smart phones have
limited support for shaders. Hence, variable length loops are
limit to a compile time constant. This limits the volume
rendering algorithms since, advance shading effects cannot be
carried out. Moreover, the sampling rate cannot be adaptively
modified without recompilation of the shaders. To circumvent
these problems, we propose the first 3D texture slicer for
WebGL. Since texture slicing relies on the rasterizer hardware
and because the support for the rasterizer hardware is better
on mobile platforms, we can not only carry out advanced
shaders but also change the sampling rate at runtime. This
enables us to carry out advanced shading [14] as detailed in
the later section.

The rest of the paper is organized as follows. Section III
details the development of our system on the WebGL platform
which includes both the single pass ray caster and the 3D
texture slicer. Section IV presents the experimental results and
performance assessments we carried out on both desktop and
mobile platforms. Finally, section V discusses and concludes
this paper.

III. SYSTEM DEVELOPMENT

WebGL is an extension of the HTML5 canvas element.
This element provides fast and high performance graphics
constructs for rendering high quality graphics in a browser
window. For 2D graphics, this is usually accomplished by
using a 2D rendering context called the
CanvasRenderingContext2D. For 3D rendering, the canvas
element provides a rendering context, called the
WebGLRenderingContext which provides the OpenGL ES 2.0
functionalities. Both of these API are controlled through
javascript.

Journal of Internet Technology and Secured Transactions (JITST), Volume 1, Issue 2, June 2012

Copyright © 2012, Infonomics Society 53

A. WebGL supported system architecture

Internally, the OpenGL context makes calls to the graphics
hardware directly through the graphics driver (see Fig. 1).
Therefore, there have been several debates on the security
issues and vulnerabilities of the WebGL API. While such a
low level access is necessary for high performance graphics,
this also allows the client program to have access to the
hardware directly which could potentially be used for an
attack. Nevertheless, such security issues have been addressed
by the new specifications and more security features are being
introduced with each new specification update.

In the case of WebGL, a rendering context is obtained from
the HTML5 canvas element. This is usually accomplished
using javascript code. Most of the current WebGL
implementations provide an experimental WebGL context
which does not comply with the full WebGL specifications. In
the new specifications v 1.0.1, however, the implementations
are now required to provide a pure non-experimental WebGL
context. The returned gl context can then be used to call any
OpenGL ES 2.0 API function [1].

With the type-less javascript API, the object type and their
memory management is handled by WebGL. This has some
performance implications especially due to the strongly typed
nature of OpenGL. WebGL has introduced special typed
arrays that correspond to the native types used by OpenGL.
This allows proper argument passing to the native OpenGL
call from WebGL. With newer browser release, their
javascript engine performance improves and becomes
comparable to a native call as in C/C++ [1].

B. Volume Rendering

The following sections list the two volume rendering
approaches implemented in our WebGL based volume
rendering system. The framework of our WebGL based single
pass volume renderers is shown in Fig. 2. The volume dataset
is first stored into the GPU texture memory. Usually, this is
carried out by using 3D textures. Since WebGL is based on
the OpenGL ES 2.0 API which is a restricted subset of the
desktop OpenGL, there are some functionalities missing, in
particular, there is no 3D texture which is a crucial
requirement for volume rendering. As shown in the figure, in
our design, this limitation is circumvented by tiling each slice
of the 3D texture into a 2D flat texture layout [9].

The volume rendering approach is based on an optical
model to approximate the emission/absorption characteristics
of the participating medium. The volume rendering integral
models the emission, absorption and transmission properties
that map the physical attributes stored in the 3D density
function. The emission absorption model is given as

dsDsFsqIDsFDI
D

s

),()(),()(
0

00
 (1)

b

a
dtt

ebaF
)(

),(

where, I0 is the background light intensity, F is the

transparency function, q(s) is the source term (the illumination
model used), I is the intensity leaving the volume, κ(t) is the
extinction coefficient, D is the distance of the viewer from the
volume and ∫κ(t)dt is the optical depth which gives the distance
the light travels before it is absorbed. For a transparent
material, the optical depth is small and for a more opaque
material, it is large.

Equation 1 only captures emission and absorption ignoring
the scattering effects. Usually, single scattering is
approximated using a local illumination model such as the
Blinn Phong model. The normal for shading in this case is

Application Layer

Operating System

Web Browser

HTML5 Canvas

WebGL

Graphics Driver

Graphics Hardware

Figure 1. Hardware Design of WebGL

 GPU

Flat 2D
volume texture

Vertex
shader +

Rasterizer

Fragment
shader

Transfer function
texture

Frame buffer

Figure 2. The dataflow for WebGL based volume
renderer

Journal of Internet Technology and Secured Transactions (JITST), Volume 1, Issue 2, June 2012

Copyright © 2012, Infonomics Society 54

estimated by evaluating the gradient at the current sample point
using finite difference approximation. The volume rendering
integral given in Eq. 1 cannot be solved analytically. Hence,
numerical approximation is used by partitioning the integration
domain into sub-intervals from s0 to D such that s0 < s1 < … <
sn-1 < D. The integral is then approximated as,

dsssFsqsIssFsI
i

i

s

s

iiiii),()()(),()(
1

11

Replacing F(si-1,si) with Ti and the right side integral that is

∫q(s)F(s,si)ds with Ci, we get

iiii CsITsI)()(1
The total radiance at the exit point of volume is then given as

nnnnn

nnnn

CCsITT

CsITsIDI

))((

)()()(

121

1

This can be given with the following recursive expression

)(,)()(00
0

1
1

sICwithCsITDI
n

i
ij

n

ij
j

In practice however, the transparency term (Ti) is usually
replaced by opacity (αi =1-Ti).

1) Composite Rendering
The physical model for volume rendering relies on

modeling the interaction between light and the participating
media. The composite rendering tries to approximate the
volume rendering integral through finite difference
approximation. Typically, this mode is implemented through
front-to-back or back-to-front alpha compositing. The
discretized volume rendering integral is iteratively computed
using either front-to-back or back-to-front compositing
depending on the direction the volume is viewed from. When
front-to-back compositing is used, the iterations are given as

nnnniii

iiii

TCCwithTT

CCTC

1,)1(1

11

In the above equations, the terms Ci and αi are obtained

from the transfer function. Replacing the term Ci+1 with Cdst
and Ci with Csrc, αsrc=1-Ti and αdst =1-Ti+1, and reformulating,
we get the conventional blending equation for front-to-back
compositing

srcdstdstdst

srcdstdstdst CCC

)1(

)1(

For back-to-front compositing, the direction of traversal is

reversed. Hence, the iterations are given as

00001

1

1,)1(

TCCwithTT

CCTC

iii

iiii

In this case, there is no need to explicitly store and

calculate transparency. Replacing the term Ci-1 with Cdst and Ci
with Csrc, αsrc=1-Ti and αdst =1-Ti-1, and reformulating, we get
the conventional blending equation for back-to-front
compositing

dstsrcsrcdst CCC)1(

2) Single-pass GPU Ray Casting
When using GPU for ray casting, a unit cube is first

rendered. Using the vertex shader, the clip space positions are
estimated by multiplying the per-vertex positions with the
modelview and projection matrices. During estimation of the

clip space position, the vertex shader also outputs object space
position for shading calculation. Following the vertex shader,
using the connectivity information, the triangle is rasterized
and the fragments are obtained. On each fragment, the
fragment shader is invoked. Once the positions are obtained,
rays are cast into the volume in the fragment shader. These
rays are sampled and adjacent material values are used to
reconstruct the original data, typically using trilinear
interpolation.

In our single-pass GPU ray caster, the bulk of the work for
volume rendering takes place in the fragment shader. The
shader is given in Listing 1. The vertex shader projects the
vertices of a unit cube to clip space by multiplying them with
the modelview and projection matrices. It also calculates the
3D texture coordinates for sampling and stores the object
space positions for shading calculation.

The fragment shader gets the interpolated 3D texture
coordinates and object space vertex positions. The current
camera position (which is the eye ray’s origin) is passed in as
a shader uniform variable (line 11-12 in Listing 1). Using this
eye ray’s origin and the cube’s interpolated object space
position, the ray directions are obtained (line 14). Before
running the costly sampling loop, we introduce an
optimization which checks the current ray against the
bounding box of the unit cube (line 16). Only if the ray
intersects the bounding box, the sampling loop is initiated
(lines 19-28); otherwise, the current fragment is discarded
(line 30). This gives significant performance boost especially
on the mobile platforms.

1 struct BBox {
2 vec3 min, max;
3 };
4 BBox getBBox(vec3 mn, vec3 mx) {
5 BBox temp;
6 temp.min = mn;
7 temp.max = mx;
8 return temp;
9 }
10 BBox bbox = getBBox(vec3(-0.5),vec3(0.5));
11 uniform vec3 eye_pos; //camera position
12 varying vec3 pos; //interpolated from vertices

13 void single_pass_raycaster() {
14 ray_dir = normalize(pos - eye_pos);
15 frag_color = vec4(0.0);

16 if(intersects(eye_pos,ray_dir,bbox)) {
17 dir_step = ray_dir*steps;
18 ray_pos = pos;
19 for(i=0;i<steps;i++) {

 //sampling and classification
20 sample = getSample(volume, ray_pos);
21 value = texture1D(lut, sample);

 //compositing
22 pre_alpha=value.a-(value.a*

 frag_color.a);
23 frag_color.rgb +=pre_alpha*value.rgb;
24 frag_color.a += pre_alpha;
25 ray_pos += dir_step; //advance ray
26 if(vec3(0)>ray_pos||ray_pos>vec3(1))
27 break;
28 }
29 } else {
30 discard;
31 }
32 return frag_color;

Journal of Internet Technology and Secured Transactions (JITST), Volume 1, Issue 2, June 2012

Copyright © 2012, Infonomics Society 55

33 }

Listing 1. Shader for the single-pass GPU ray casting
Depending on the current step size used and the total

number of sampling points, a loop is initiated (line 19). In
each iteration, the sample value is obtained by a lookup from
the volume dataset (line 20). To the interpolated the value, the
transfer function is applied (line 21) and then the classified
value is accumulated using the current compositing scheme
(line 22-24). The ray steps forward in the current viewing
direction (line 25). The whole process is repeated until the ray
exits the whole volume dataset (line 26-27). Finally, the
composited color is returned as the fragment color (line 32).

With the versatility of the single-pass ray caster, we can
modify the ray function instantly. Effects like maximum
intensity projection (MIP), maximum intensity difference
accumulation (MIDA), average, composite, and isosurface
rendering modes can be realized easily thanks to the efficiency
of the single-pass ray caster.

3) Isosurface Rendering with Adaptive Refinement
The isosurface can be given using the following implicit

function
})(|{ kxxS

where, k is a constant and φ is called the embedding. The
locality of a point p with respect to the isosurface depends on
the value of φ(p). If the value is less than k, the point is below
the isosurface. If the value is greater than k, the point is above
the isosurface. The shading calculation of the isosurface
requires the evaluation of the normal vector. This normal
vector is obtained from the normalized gradient of φ which is
calculated as follows

)(

)(
)(

x

x
xN

For volume dataset, the gradient is estimated using finite
difference approximations such as centered finite difference as
follows

2

)1,,()1,,(
2

),1,(),1,(
2

),,1(),,1(

zyxfzyxf

zyxfzyxf

zyxfzyxf

f

In case of isosurface rendering, only lines (22-24) are

modified. Now instead of compositing, the current and the
next sample’s classified value is checked to see if the values
are close to the given isovalue. If they are within an epsilon
range of the isovalue, the normal is estimated using the
centered finite difference approximation and then the shading
is calculated using Blinn Phong shading model.

4) Combining Composite and Isosurface Rendering
We further developed a new hybrid rendering mode. This

mode allows us to combine the result of multiple ray
functions. For instance, we can combine the isosurface
rendering to the composite rendering. The conventional
isosurface is evaluated using a condition to test whether the
current sample value is closer to the required isovalue. This
results in an image containing a lot of sampling artifacts
especially in regions where the isosurface blends with the
background color, as shown by a rendering experiment in Fig.
3 (a). Moreover, since the isosurface is combined with the

background color, the colors bleed on the isosurface, making
its identification difficult.

In our solution, we eliminate the conditional test. Instead,
we use blended isosurfaces which are generated using an
alpha transfer function. This allows the isosurfaces to be
blended naturally with the existing ray function. This avoids
flickering artifacts in isosurface evaluation, because when the
next ray step composites the current sample value, the
isosurface loses its color. In addition, the resulting isosurface
will not suffer from color bleeding artifacts, and therefore the
isosurface color is sustained, as can been verified by the
rendering experiment in Fig. 3 (b).

5) Real-time Transfer Function Modification

For effective visualization, we provide a transfer function
widget that can adjust the current transfer function as required
in real-time. This widget was written entirely in the client side
javascript.

Figure 3. Ray casting for the Manix dataset: (a)
without ray function blending, and (b) with ray
function blending. (Note that both renderings used the
same transfer function, but the color bleeding and
sampling artifacts are removed in our ray function
blended single-pass ray casting.)

Journal of Internet Technology and Secured Transactions (JITST), Volume 1, Issue 2, June 2012

Copyright © 2012, Infonomics Society 56

The user can adjust the transfer function color and the

current samples alpha value by assigning color and alpha
values to specific keys. The X-axis corresponds to the scalar
value (which for our case varies from 0 to 255 since we used
8-bit datasets) and the Y-Axis corresponds to the transparency
value (which varies in the 0-1 range). Such a widget is shown
in Fig. 4.

When the user modifies the transfer function by adding a
new key or moving an existing key, first the new positions of
all of the keys are determined. These keys are then sorted
based on the intensity value they represent. Finally, the colors
are interpolated and then the transfer function texture is
updated. For efficiently modifying the transfer function
texture, the gl.texSubImage2D function is used which directly
modifies the texture data without creating a new texture. The
whole process of transfer function modification is detailed in
Listing 2. Each transfer function key contains a data-value
pair with the data being intensity and the value being a color
value containing red, green, blue and alpha components.

proc updateTF()
 //data contains the output transfer func. data
 sort the keys on the intensity
 for i=0 to keys.length
 dColor = keys[i+1].rgba–keys[i].rgba;
 dIndex = keys[i+1].intensity -
 keys[i].intensity;
 delta = dColor/dIndex;
 for j=keys[i].intensity+1 to
 keys[i+1].intensity
 data[j] = data[j] + delta;
 end for
 end for
end proc
Listing 2. The transfer function modification pseudocode

IV. EXPERIMENTAL RESULTS AND PERFORMANCE

ASSESSMENT

The performance of the proposed algorithm was evaluated
using a few experiments on two desktop platforms and two
mobile platforms. Two different desktop systems were used
which include the Dell Precision T7500 workstation (referred
to as SYSTEM1) with a 2.27 GHz Intel Xeon CPU with 4 GB
of RAM. This machine is equipped with an NVIDIA Quadro
FX 5800 GPU with 4096 MB of dedicated video memory.

The second platform is a Dell Alienware M15x laptop
(referred to as SYSTEM2) with an Intel Core i7 CPU and an
NVIDIA GeForce 260M GPU. In addition, we also carried out
experiments on two mobile platforms, an ACER Iconia A500
Tablet (referred to as MOBILE1), 1GHz dual-core Cortex A9
processor with an NVIDIA Tegra 2 GPU and a Samsung
Galaxy SII GT-I9100 (referred to as MOBILE2), dual-core
1.2 GHz Cortex-A9 mobile phone with Mali-400MP GPU.
Both of these mobile platforms ran the Google Android
operating system.

For thorough evaluation, four 8-bit datasets were used in
these experiments, namely Aorta (256×256×97), Skull
(256×256×256), CTHead (256×256×256) and Manix dataset
(256×230×256). These datasets were stored on our local web
server. The datasets were stored into a 2D flat texture layout
with an image resolution of 4096×4096. The Aorta dataset
contained 96 slices which were stored in a 2D layout of
10×10. The other datasets contained 256 slices which were
stored in a 2D layout of 16×16.

A. Comparison of Single-Pass Ray Caster to Multi-Pass Ray
Caster on Desktop Platforms

The first set of experiments was conducted on both
SYSTEM1 and SYSTEM2 to compare the performance of our
single pass GPU ray caster against the current state-of-the-art
WebGL ray caster [9]. For this experiment, we used the
composite rendering mode with transfer function (shown in
Fig. 4). All of the rendering and startup settings (for example
the distance of the volume from the camera) were same for
both of the WebGL ray casters. The tests were carried out on
the canvas resolutions of 1024×1024 pixels. The ray sampling
steps for this experiment were 100. These results are given in
Table 1. The rendering results on the desktop platform in the
Google Chrome Web browser are given in Fig. 5.

As can be seen from the statistics in Table 1, our proposed
single pass ray caster consistently outperforms the multi-pass
ray caster. The reason for this speedup in our proposed
algorithm is the significantly less number of texture fetches
and more efficient ray traversal. The multi-pass approach of
[9] suffers from visual artifacts at the cube edges. Since we do
not require any additional lookup (for example the multi-pass
approach requires the front and back textures for extracting
the ray direction), our performance remains consistent.

B. Comparison of Single-Pass Ray Caster to Multi-Pass Ray
Caster on Mobile Platforms

The second set of experiments was carried out on the
mobile platforms, for estimating the performance of the
proposed GPU based single pass ray casting algorithm in
WebGL on the mobile platforms. For this experiment,
composite function without transfer function was used with
100 sampling steps. The reason we used 100 sampling steps is
because we found out that the maximum steps for a variable
loop supported on the tablet were 100. Any loop size larger
than this value timed out the shader compiler and the tablet
could not run the shader.

R
G

B
A

 I
nt

en
si

ty
 (

0-
1)

 Scalar Value (0-255)

Figure 4. The transfer function widget for transfer
function assignment in WebGL

Journal of Internet Technology and Secured Transactions (JITST), Volume 1, Issue 2, June 2012

Copyright © 2012, Infonomics Society 57

The canvas resolution for this experiment was 1024×1024.
The datasets were down sampled to 1024×1024 resolution.
This was due to the memory limitations on the mobile
platforms. The results are given in Table 2 and the screenshots
from the mobile platforms are shown in Fig. 6.

As can be seen, the performance trend we observed on the
desktop platforms (shown in Table 1) is followed in this case
as well. Our single pass ray caster out performs the multi-pass
ray caster by almost 2x. We get much better performance even
though all of the rendering settings are same. The reason for
better performance in the single-pass ray caster seems to be
due to the significantly less number of texture fetches as
compared to the multi-pass approach. We expect the
upcoming hardware to relax the variable length loop limit
further which would improve the performance of this
algorithm considerably.

Dataset Hardware

Frame rate (in frames per second)

Multi-pass ray
caster [9]

Our proposed
single-pass
ray caster

Aorta

SYSTEM1 72.3-90.7 90.8-90.9

SYSTEM2 32.0-46.4 77.8-80.8

CTHead
SYSTEM1 52.3-80.7 89.4-90.9

SYSTEM2 31.6-45.0 73.1-77.5

Skull
SYSTEM1 54.5-81.2 90.7-90.8

SYSTEM2 31.0-44.7 75.6-77.8

Table 1. Comparison of performance of our proposed
single pass GPU ray caster against the current state-of-
the-art GPU ray caster for WebGL for 100 sampling steps
on the desktop platforms.

Dataset Hardware

Frame rate (in frames per second)

Multi-pass ray
caster [9]

Our proposed
single-pass
ray caster

512×512 1024×1024 512×512 1024×1024

Aorta

MOBILE1 0.5 0.1 0.9-1.0 0.2-0.3

MOBILE2 1.5-1.8 0.5 4.4-4.6 1.3-1.6

CTHead
MOBILE1 0.5 0.1-0.2 1.0 0.2-0.3

MOBILE2 1.8-1.9 0.5 3.3-3.6 1.0-1.1

Skull
MOBILE1 0.5 0.1-0.2 1.0 0.2-0.3

MOBILE2 1.4-1.5 0.4-0.5 3.3-3.5 0.9-1.0

Table 2. Comparison of performance of our proposed
single pass GPU ray caster against the current state-of-
the-art GPU ray caster for WebGL for a sampling rate of
0.01 (100 sampling points) on the mobile platforms

C. Performance of 3D Texture Slicer on Desktop Platforms

In the third set of experiments, we evaluated the
performance of 3D texture slicing on the desktop platforms.
There were two rendering modes used in this experiment, the
composite (as shown in Fig. 5 (a-c)) and the composite with
shading mode (as shown in Fig. 5 (d-f)) which calculated the
normal for shading by on demand gradient estimation using

(a) (d)

(b) (e)

(c) (f)
Figure 5. Rendering results from the proposed GPU-
based single-pass ray casting on WebGL showing (a,d)
the Aorta dataset, (b,e) the CTHead dataset, and (c,f)
the Skull dataset. Figures (a-c) are generated using
single pass ray caster with 256 sampling steps and
composite rendering mode whereas Figures (d-f) are
generated using 3D texture slicer with 512 sampling
points and composite with shading rendering mode

Figure 6. WebGL compliant volume rendering of 3D
medical dataset implemented on the stand-alone
desktop (left) and two mobile platforms: ACER Iconia
A500 tablet (middle) and the Samsung Galaxy SII GT-
I9100 mobile phone (right)

Journal of Internet Technology and Secured Transactions (JITST), Volume 1, Issue 2, June 2012

Copyright © 2012, Infonomics Society 58

centered finite difference. For all of the experiments on these
platforms, a common canvas resolution of 1024 × 1024 pixels
was used. The datasets were kept at 2 world units from the
camera so that they were visible entirely on the screen. In
addition to remove any biases due to a specific viewing
direction, the datasets were rotated 720 degrees. The frame
rates varied in a small range. There were three web browsers
used in this experiment, Opera Next v 12.00 alpha, Google
Chrome v 17.0.963.56 and Mozilla Firefox v 11.0 beta.

The Opera WebGL implementation uses the OpenGL API
whereas both Chrome and Firefox WebGL implementations
emulate the OpenGL ES API using DirectX 9 though the
Angle engine. These WebGL implementations are named
ChromeDX and FirefoxDX respectively. To disable the Angle
rendering both Chrome and Firefox provide configuration
settings. For Chrome, the –use-gl=desktop startup switch
provides this whereas for Firefox, the configuration is
manually set by setting the prefer-native-gl and force-enabled
flags to true in the about:config configuration settings.

We named these configurations as ChromeGL and
FirefoxGL in the experiments. The results for 256 sampling
steps are presented in Table 3. We can see that there are
significant differences in performance on different browsers.
In our experiments, Google Chrome and Mozilla Firefox
performed the best for all of the experiments.

Dataset
Web

browser

Frame rate (in frames per second)

Composite Composite+Shading

Aorta

Opera 80.1-90.0 66.9-74.6

ChromeGL 96.3-97.5 60.6-70.9

ChromeDX 95.8-97.7 60.8-70.9

FirefoxGL 54.8-59.8 38.3-43.3

FirefoxDX 94.9-100.0 65.2-75.2

CTHead

Opera 74.0-76.1 24.9-26.8

ChromeGL 68.7-71.1 26.2-30.7

ChromeDX 68.9-71.4 26.7-30.1

FirefoxGL 41.7-43.5 21.6-24.0

FirefoxDX 76.9-82.3 28.5-31.2

Skull

Opera 73.5-80.1 24.2-26.9

ChromeGL 71.6-74.4 26.7-31.4

ChromeDX 70.9-74.8 26.9-31.7

FirefoxGL 32.4-43.4 21.1-24.8

FirefoxDX 80.8-85.5 28.3-33.1

Table 3. The performance results for 3d texture slicing in
WebGL for a sampling rate of 0.0039 (256 sample points)
on SYSTEM1

D. Comparison of Single-pass Ray Caster to 3D Texture
Slicer on Desktop Platforms

The fourth set of experiments was conducted on both
SYSTEM1 and SYSTEM2 to compare the performance of the
single pass GPU ray caster against the 3D texture slicer in
WebGL on the Google Chrome browser. For this experiment,
the composite rendering mode with transfer function was
used. The tests were carried out on the canvas resolutions of
1024×1024 pixels.

The ray sampling steps as well as the total texture slices
were both 256 and the volume was placed 2 units from the

camera so that it covered the whole screen. These results are
given in Table 4. As can be seen from the statistics in Table 4,
the performance of 3D texture slicer is almost 1.5x better as
compared to the single pass ray caster.

E. Comparison of Single-pass Ray Caster to 3D Texture
Slicer on Mobile Platforms

In the final set of experiments, we compared the
performance of 3D texture slicer and single pass GPU ray
caster on the mobile platforms. The canvas resolution was
1024×1024. For this experiment, composite function without
transfer function was used. The total sampling steps used were
100 for both texture slicing and GPU ray casting because the
fragment shader could not link on the tablet for variable loop
size larger than 100. These results are given in Table 5.

As can be seen, we were able to obtain interactive frame
rates even on a mobile platform. The 3D texture slicer
outperformed the GPU ray caster by almost 2x. The results
concluded that performance wise, for volume rendering, 3D
texture slicing is consistently better both on the desktop as
well as the mobile platforms.

Dataset Hardware
Frame rate (in frames per second)

Ray caster 3D texture slicer

Aorta

SYSTEM1 63.6-79.4 98.2-98.7

SYSTEM2 33.5-35.2 51.3-55.2

CTHead
SYSTEM1 39.3-47.5 54.9-59.4

SYSTEM2 16.9-18.4 29.2-32.5

Skull
SYSTEM1 33.7-41.0 58.4-61.8

SYSTEM2 14.2-19.5 30.6-35.5

Table 4. Comparison of performance of the single pass
GPU ray caster against the proposed 3D texture slicer for
WebGL on the desktop platforms

Dataset Hardware
Frame rate (in frames per second)

Ray caster 3D texture slicer

Aorta

MOBILE1 1.2-1.3 2.3-2.5

MOBILE2 1.3-1.6 3.8-5.6

CTHead
MOBILE1 0.2-0.3 1.9-2.4

MOBILE2 1.0-1.1 4.3-5.1

Skull
MOBILE1 0.2-0.3 2.4-2.5

MOBILE2 0.9-1.0 4.8-5.1

Table 5. Comparison of performance of 3D texture slicer
and GPU ray casting for a sampling rate of 0.01 (100
sample points) on mobile platforms

V. DISCUSSION AND CONCLUSION

We have presented the first single-pass ray caster for
WebGL. In contrast to the current state-of-the-art for volume
rendering in WebGL [9], our implementation is able to handle
dynamic transfer functions even on mobile platforms. A
quantitative evaluation revealed that the proposed algorithm
outperforms the existing WebGL ray caster by up to 2x on
both stand-alone and mobile platforms. Such high

Journal of Internet Technology and Secured Transactions (JITST), Volume 1, Issue 2, June 2012

Copyright © 2012, Infonomics Society 59

performance is helpful especially on the mobile platforms
where the texture accesses are too costly. With the new mobile
devices, we expect more support in the upcoming WebGL
implementations for more advanced shaders.

Currently, due to the limitation in the loop iteration for
dynamic loops on the mobile platforms, it is not possible to
implement advanced shaders. Therefore, to have high
performance volume rendering especially on the mobile
platform, we presented the first 3D texture slicer for WebGL.
This allows us to render volumes with higher sampling rates
on the mobile platforms. The experimental results have shown
that, performance wise, 3D texture slicer performs better as
compared to the single-pass ray caster.

While both of them are suitable for WebGL
implementation, the choice is subject to a performance/quality
trade off. Although, the limited support for variable loops in
the current WebGL implementations on the mobile platforms
prevents us from introducing more optimization in the single-
pass ray caster, we expect that the upcoming hardware will
relax such restrictions. This will enable the proposed single-
pass ray caster to perform better on the upcoming mobile
platforms.

We are confident on the results obtained from the
experiments and would like to expand the work to address
specific applications such as rapid prototyping of biomedical
models [10], coupling between deformation and rendering of
volumetric models [11,12,19] as well as confocal
endomicroscopy [15]. This will enable the ubiquitous
visualization and processing capabilities in a wide application
domain.

In conclusion, thanks to the wide availability of the WebGL
architecture, we have successfully developed a ubiquitous
volume renderer for visualization of the biomedical datasets
directly on the mobile platforms. With new and improved
hardware features in the upcoming mobile devices, we expect
these advanced features to be exposed through WebGL. This
would allow a richer interactive visualization experience.
Moreover, with new and improved mobile GPUs in the
coming generations, we expect our algorithm to perform even
better on these newer devices. WebGL is indeed a promising
platform for high-quality mobile applications. We can carry
out more sophisticated renderings, for example, dynamic
shading using real-time texture lookups in 3D texture slicing
even on the mobile platforms. Such effects are impossible in
the current state-of-the-art ray caster.

ACKNOWLEDGMENT

This work is partially supported by two research grants,
M408020000 from Nanyang Technological University and
M4080634.B40 from Institute for Media Innovation, NTU,
and a grant MOE2011-T2-2-037 from Ministry of Education,
Singapore.

REFERENCES
[1] C. Marrin, “The official WebGL specifications,” Available online:

http://www.khronos.org/registry/webgl/specs/latest/, accessed in 2012.

[2] K. Engel, M. Hadwiger, J. M. Kniss, A. Lefohn, C. R. Salama and D.
Weiskopf, “Real-time volume graphics,” A.K.Peters Publisher, 2005.

[3] B. Preim and D. Bartz, "Visualization in Medicine," Elsevier Inc.
Publisher, 2007.

[4] M. Hadwiger, P. Ljung, C. R. Salama, and T. Ropinski, “Advanced
illumination techniques for gpu-based volume raycasting,” ACM
SIGGRAPH 2009 Courses, 2009.

[5] J. Kruger and R. Westermann, “Acceleration techniques for GPU-based
volume rendering,” Proceedings of the 14th IEEE visualization, 2003.

[6] S. Stegmaier, M. Strengert, T. Klein and T. Ertl, “A simple and flexible
volume rendering framework for graphics-hardware-based raycasting,”
Proceedings of The Fourth International Workshop on Volume
Graphics, 2005, pp. 187 – 241.

[7] S. Bruckner and M. E. Groller, “Instant volume visualization using
maximum intensity difference accumulation,” Computer Graphics
Forum, 28(3), 2009, pp. 775-782.

[8] M. Hadwiger, C. Sigg, H. Scharsach, K. Bühler and M. Gross, “Real-
time ray-casting and advanced shading of discrete isosurfaces,”
Computer Graphics Forum, 24(3), 2005, pp. 303-312.

[9] J. Congote, L. Kabongo and A. Moreno, “Interactive visualization of
volumetric data with WebGL in real-time,” Proceedings of The 2011
Web3D ACM Conference, 2011, pp. 137-146.

[10] F. Lin, H. S. Seah, Z. Wu, D. Ma, “Voxelisation and fabrication of
freeform models,” Virtual and Physical Prototyping, vol. 2(2), 2007, pp.
65-73.

[11] M. M. Movania and F. Lin, “A Novel GPU-based Deformation
Pipeline,” ISRN Computer Graphics, Vol. 2012, Article ID: 936315,
2012. doi:10.5402/2012/936315.

[12] M. M. Movania and F. Lin, “Real-time Physically-based Deformation on
the GPU using Transform Feedback,” Chapter 17 in The OpenGL
Insights, AK Peters/CRC Press, pp:233-248, 2012.

[13] M. M. Movania and F. Lin, “Ubiquitous Medical Volume Rendering on
Mobile Devices” IEEE International Conference on Information Society
(i-Society 2012), London, UK, pp:93-98, 2012.

[14] M. M. Movania and F. Lin, “High-Performance Volume Rendering on
the Ubiquitous WebGL Platform” The 14th International Conference on
High Performance Computing and Communication (HPCC 2012),
Liverpool, UK, June 2012 (in press).

[15] P. Thong, M. Olivo, S. Tandjung, M. M. Movania, F. Lin, K. Qian, H. S.
Seah, K. C. Soo, “Review of Confocal Fluorescence Endomicroscopy
for Cancer Detection,” IEEE Photonics Society (IPS) Journal of Selected
Topics in Quantum Electronics, PP(99), 2011, pp:1-12.

[16] T. J. Cullip and U. Neumann, "Accelerating volume reconstruction with
3D texture hardware," University of North Carolina at Chapel Hill,
Tech. Rep.,1994.

[17] B. Cabral, N. Cam, and J. Foran, "Accelerated volume rendering and
tomographic reconstruction using texture mapping hardware," in Proc.
Symp. Volume Vis., Tysons Corner, Virginia, United States, 1994, pp.
91-98.

[18] A. Van Gelder and K. Kim, "Direct volume rendering with shading via
three-dimensional textures," in Proc. Symp. Volume Vis., San Francisco,
California, United States, 1996, pp. 23-30.

[19] M. M. Movania, F. Lin, K. Qian, W.M. Chiew and H.-S. Seah,
"Coupling between Meshless FEM Modeling and Rendering on GPU for
Real-time Physically-based Volumetric Deformation", Journal of
WSCG, Vol. 20, No. 1, pp:1-10, ISSN 1213-6972, Union Agency, 2012.

Journal of Internet Technology and Secured Transactions (JITST), Volume 1, Issue 2, June 2012

Copyright © 2012, Infonomics Society 60

