Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Peptide Aptamer Libraries

Author(s): Bernd Groner, Corina Borghouts and Christian Kunz

Volume 11, Issue 2, 2008

Page: [135 - 145] Pages: 11

DOI: 10.2174/138620708783744462

Price: $65

Abstract

Peptide aptamers are molecules that bind to protein targets and are able to interfere with their functions. In the past, important achievements have been made using such peptide aptamers in different approaches and for various purposes. Peptide aptamers are comprised of a variable peptide region of 8 to 20 amino acids in length, which is displayed by a scaffold protein. An overview of the numerous scaffold proteins that have been investigated for their suitability to present peptide aptamers will be given. To identify peptide aptamers efficiently and specifically binding to a predetermined target, two eukaryotic systems have been used in multiple studies: a modified version of the Gal4 yeast-two-hybrid system and the optimized LexA interaction trap system. The two yeast systems are compared and the design of high-complexity peptide aptamer libraries for these systems is described. Although the yeast-two-hybrid system is based on intracellular interactions mammalian screens, performed in cell culture experiments, are sometimes preferred or required. We will give an overview of the mammalian selection systems available, which are based on the expression of peptide aptamers in retroviral or lentiviral vectors. We will show that the isolation and use of peptide aptamers as inhibitors of individual signaling components represents a new challenge for drug development.

Keywords: Peptide aptamers, screening systems, scaffolds, library construction


Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy