Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Protective Role of Natural Products in Cisplatin-Induced Nephrotoxicity

Author(s): Nurul Raudzah Adib Ridzuan, Norhashima Abd Rashid, Faizah Othman, Siti Balkis Budin, Farida Hussan and Seong Lin Teoh*

Volume 19, Issue 14, 2019

Page: [1134 - 1143] Pages: 10

DOI: 10.2174/1389557519666190320124438

Price: $65

Abstract

Cisplatin is a widely used antineoplastic agent for the treatment of metastatic tumors, advanced bladder cancer and many other solid tumors. However, at higher doses, toxicities such as nephrotoxicity may appear. Cisplatin leads to DNA damage and subsequently renal cell death. Besides that, oxidative stress is also implicated as one of the main causes of nephrotoxicity. Several studies showed that numerous natural products: ginseng, curcumin, licorice, honey and pomegranate were able to reduce the oxidative stress by restoring the levels of antioxidant enzymes and also at the same time act as an anti-inflammatory agent. Furthermore, pre-treatment with vitamin supplementation, such as vitamin C, E and riboflavin markedly decreased serum urea and increased the levels of antioxidant enzymes in the kidney even after cisplatin induction in cancer patients. These natural products possess potent antioxidant and anti-inflammatory medicinal properties, and they can be safely used as a supplementary regime or combination therapy against cisplatin-induced nephrotoxicity. The present review focused on the protective role of a few natural products which is widely used in folk medicines in cisplatin-induced nephrotoxicity.

Keywords: Cancer, natural product, cisplatin, toxicity, kidney, nephrotoxicity.

Graphical Abstract
[1]
Tsang, R.Y.; Al-Fayea, T.; Au, H.J. Cisplatin overdose: Toxicities and management. Drug Saf., 2009, 32, 1109-1122.
[2]
WHO. WHO Model List of Essential Medicines (19th list); WHO, 2015.
[3]
Iraz, M.; Kalcioglu, M.T.; Kizilay, A.; Karatas, E. Aminoguanidine prevents ototoxicity induced by cisplatin in rats. Ann. Clin. Lab. Sci., 2005, 35, 329-335.
[4]
Yao, X.; Panichpisal, K.; Kurtzman, N.; Nugent, K. Cisplatin nephrotoxicity: A review. Am. J. Med. Sci., 2007, 334, 115-124.
[5]
Zheng, X.N.; Wang, X.W.; Li, L.Y.; Xu, Z.W.; Huang, H.Y.; Zhao, J.S.; Zhang, D.; Yin, X.; Sheng, J.; Tang, J.T. Pu-erh tea powder preventive effects on cisplatin-induced liver oxidative damage in Wistar rats. Asian Pac. J. Cancer Prev., 2014, 15, 7389-7394.
[6]
Faig, J.; Haughton, M.; Taylor, R.C.; D’Agostino, R.B. Jr., Whelen, M.J.; Porosnicu R.K.A.; Bonomi, M.; Murea, M.; Porosnicu, M. Retrospective analysis of cisplatin nephrotoxicity in patients with head and neck cancer receiving outpatient treatment with concurrent high-dose cisplatin and radiotherapy. Am. J. Clin. Oncol., 2016, 41, 432-440.
[7]
Jung, S.H.; Kim, H.J.; Oh, G.S.; Shen, A.; Lee, S.; Choe, S.K.; Park, R.; So, H.S. Capsaicin ameliorates cisplatin-induced renal injury through induction of heme oxygenase-1. Mol. Cells, 2014, 37, 234-240.
[8]
Hoek, J.; Bloemendal, K.M.; van der Velden, L.A.; van Diessen, J.N.; van Werkhoven, E.; Klop, W.M.; Tesselaar, M.E. Nephrotoxicity as a dose-limiting factor in a high-dose cisplatin-based chemoradiotherapy regimen for head and neck carcinomas. Cancers, 2016, 8E21
[9]
Bhat, Z.Y.; Cadnapaphornchai, P.; Ginsburg, K.; Sivagnanam, M.; Chopra, S.; Treadway, C.K.; Lin, H.S.; Yoo, G.; Sukari, A.; Doshi, M.D. Understanding the risk factors and long-term consequences of cisplatin-associated acute kidney injury: An observational cohort study. PLoS One, 2015, 10e0142225
[10]
Liu, J.; Liu, Y.; Habeebu, S.S.; Klaassen, C.D. Metallothionein (MT)-null mice are sensitive to cisplatin-induced hepatotoxicity. Toxicol. Appl. Pharmacol., 1998, 149, 24-31.
[11]
Sahu, B.D.; Rentam, K.K.; Putcha, U.K.; Kuncha, M.; Vegi, G.M.; Sistla, R. Carnosic acid attenuates renal injury in an experimental model of rat cisplatin-induced nephrotoxicity. Food Chem. Toxicol., 2011, 49, 3090-3097.
[12]
Ciarimboli, G. Membrane transporters as mediators of cisplatin side-effects. Anticancer Res., 2014, 34, 547-550.
[13]
Pabla, N.; Murphy, R.F.; Liu, K.; Dong, Z. The copper transporter ctr1 contributes to cisplatin uptake by renal tubular cells during cisplatin nephrotoxicity. Am. J. Physiol. Renal Physiol., 2009, 296, F505-F511.
[14]
Wilmes, A.; Bielow, C.; Ranninger, C.; Bellwon, P.; Aschauer, L.; Limonciel, A.; Chassaigne, H.; Kristl, T.; Aiche, S.; Huber, C.G.; Guillou, C.; Hewitt, P.; Leonard, M.O.; Dekant, W.; Bois, F.; Jennings, P. Mechanism of cisplatin proximal tubule toxicity revealed by integrating transcriptomics, proteomics, metabolomics and biokinetics. Toxicol. In Vitro, 2015, 30, 117-127.
[15]
Kuhlman, M.K.; Burkhardt, G.; Kohler, H. Insights into potential cellular mechanisms of cisplatin nephrotoxicity and their clinical application. Nephrol. Dial. Transplant., 1997, 12, 2478-2480.
[16]
Yan, M.; Tang, C.; Ma, Z.; Huang, S.; Dong, Z. DNA damage response in nephrotoxic and ischemic kidney injury. Toxicol. Appl. Pharmacol., 2016, 313, 104-108.
[17]
Sedletska, Y.; Giraud-Panis, M.J.; Malinge, J.M. Cisplatin is a DNA-damaging antitumour compound triggering multifactorial biochemical responses in cancer cells: Importance of apoptotic pathways. Curr. Med. Chem. Anticancer Agents, 2005, 5, 251-265.
[18]
Di Pasqua, A.J.; Kerwood, D.J.; Shi, Y.; Goodisman, J.; Dabrowiak, J.C. Stability of carboplatin and oxaliplatin in their infusion solutions is due to self-association. Dalton Trans., 2011, 40, 4821-4825.
[19]
Zhu, S.; Pabla, N.; Tang, C.; He, L.; Dong, Z. DNA damage response in cisplatin-induced nephrotoxicity. Arch. Toxicol., 2015, 89, 2197-2205.
[20]
Dobyan, D.C. Long-term consequences of cis-platinum-induced renal injury: A structural and functional study. Anat. Rec., 1985, 212, 239-245.
[21]
Zhou, Y.; Xu, H.; Xu, W.; Wang, B.; Wu, H.; Tao, Y.; Zhang, B.; Wang, M.; Mao, F.; Yan, Y.; Gao, S.; Gu, H.; Zhu, W.; Qian, H. Exosomes released by human umbilical cord mesenchymal stem cells protect against cisplatin-induced renal oxidative stress and apoptosis in vivo and in vitro. Stem Cell Res. Ther., 2013, 4, 34.
[22]
Quintanilha, J.C.F.; Visacri, M.B.; Sousa, V.M.; Bastos, L.B.; Vaz, C.O.; Guarnieri, J.P.O.; Amaral, L.S.; Malaguti, C.; Lima, C.S.P.; Vercesi, A.E.; Moriel, P. Cisplatin-induced human peripheral blood mononuclear cells’ oxidative stress and nephrotoxicity in head and neck cancer patients: The influence of hydrogen peroxide. Mol. Cell. Biochem., 2017, 440, 139-145.
[23]
Hannemann, J.; Baumann, K. Cisplatin-induced lipid peroxidation and decrease of gluconeogenesis in rat kidney cortex: Different effects of antioxidants and radical scavengers. Toxicology, 1988, 51, 119-132.
[24]
WHO. WHO Traditional Medicine Strategy, 2014-2023; WHO: Geneva, 2013.
[25]
Cohen, M.; Hunter, J. Complementary medicine products: Interpreting the evidence base. Int. Med. J., 2017, 47, 992-998.
[26]
Lengacher, C.A.; Bennett, M.P.; Kip, K.E.; Gonzalez, L.; Jacobsen, P.; Cox, C.E. Relief of symptoms, side effects, and psychological distress through use of complementary and alternative medicine in women with breast cancer. Oncol. Nurs. Forum, 2006, 33, 97-104.
[27]
Nasri, H.; Baradaran, A.; Shirzad, H.; Rafieian-Kopaei, M. New concepts in nutraceuticals as alternative for pharmaceuticals. Int. J. Prev. Med., 2014, 5, 1487-1499.
[28]
Patel, S.; Rauf, A. Adaptogenic herb ginseng (Panax) as medical food: Status quo and future prospects. Biomed. Pharmacother., 2017, 85, 120-127.
[29]
Kim, Y.J.; Lee, M.Y.; Son, H.Y.; Park, B.K.; Ryu, S.Y.; Jung, J.Y. Red ginseng ameliorates acute cisplatin-induced nephropathy. Planta Med., 2014, 80, 645-654.
[30]
Liu, X.; Huang, Z.; Zou, X.; Yang, Y.; Qiu, Y.; Wen, Y. Panax notoginseng saponins attenuates cisplatin-induced nephrotoxicity via inhibiting the mitochondrial pathway of apoptosis. Int. J. Clin. Exp. Pathol., 2014, 7, 8391-8400.
[31]
Ma, Z.N.; Li, Y.Z.; Li, W.; Yan, X.T.; Yang, G.; Zhang, J.; Zhao, L.C.; Yang, L.M. Nephroprotective effects of saponins from leaves of Panax quinquefolius against cisplatin-induced acute kidney injury. Int. J. Mol. Sci., 2017, 18, 1407.
[32]
Ma, Z.N.; Liu, Z.; Wang, Z.; Ren, S.; Tang, S.; Wang, Y.P.; Xiao, S.Y.; Chen, C.; Li, W. Supplementation of American ginseng berry extract mitigated cisplatin-evoked nephrotoxicity by suppressing ROS-mediated activation of MAPK and NF-kB signaling pathways. Food Chem. Toxicol., 2017, 110, 62-73.
[33]
Han, M.S.; Han, I.H.; Lee, D.; An, J.M.; Kim, S.N.; Shin, M.S.; Yamabe, N.; Hwang, G.S.; Yoo, H.H.; Choi, S.J.; Kang, K.S.; Jang, H.J. Beneficial effects of fermented black ginseng and its ginsenoside 20(S)-Rg3 against cisplatin-induced nephrotoxicity in LLC-PK1 cells. J. Ginseng Res., 2016, 40, 135-140.
[34]
Jung, K.; An, J.M.; Eom, D.W.; Kang, K.S.; Kim, S.N. Preventive effect of fermented black ginseng against cisplatin-induced nephrotoxicity in rats. J. Ginseng Res., 2017, 41, 188-194.
[35]
Yousef, M.I.; Hussien, H.M. Cisplatin-induced renal toxicity via tumor necrosis factor-a, interleukin 6, tumor suppressor P53, DNA damage, xanthine oxidase, histological changes, oxidative stress and nitric oxide in rats: Protective effect of ginseng. Food Chem. Toxicol., 2015, 78, 17-25.
[36]
Mathiyalagan, R.; Yang, D.C. Ginseng nanoparticles: A budding tool for cancer treatment. Nanomedicine, 2017, 12, 1091-1094.
[37]
Park, J.Y.; Choi, P.; Kim, T.; Ko, H.; Kim, H.K.; Kang, K.S.; Ham, J. Protective effects of processed ginseng and its active ginsenosides on cisplatin-induced nephrotoxicity: In vitro and in vivo studies. J. Agric. Food Chem., 2015, 63, 5964-5969.
[38]
Li, W.; Yan, M.H.; Liu, Y.; Liu, Z.; Wang, Z.; Chen, C.; Zhang, J.; Sun, Y.S. Ginsenoside Rg5 ameliorates cisplatin-induced nephrotoxicity in mice through inhibition of inflammation, oxidative stress, and apoptosis. Nutrients, 2016, 8, 566.
[39]
Baek, S.H.; Shin, B.K.; Kim, N.J.; Chang, S.Y.; Park, J.H. Protective effect of ginsenosides Rk3 and Rh4 on cisplatin-induced acute kidney injury in vitro and in vivo. J. Ginseng Res., 2017, 4, 233-239.
[40]
Wang, H.; Kong, L.; Zhang, J.; Yu, G.; Lv, G.; Zhang, F.; Chen, X.; Tian, J.; Fu, F. The pseudoginsenoside F11 ameliorates cisplatin-induced nephrotoxicity without compromising its anti-tumor activity in vivo. Sci. Rep., 2014, 4, 4986.
[41]
Qi, Z.L.; Wang, Z.; Li, W.; Hou, J.G.; Liu, Y.; Li, X.D.; Li, H.P.; Wang, Y.P. Nephroprotective effects of anthocyanin from the fruits of Panax ginseng (GFA) on cisplatin-induced acute kidney injury in mice. Phytother. Res., 2017, 31, 1400-1409.
[42]
Hatano, T.; Eerdunbayaer, C.Y.; Kuroda, T.; Shimozu, Y. In: Biological activities and action mechanisms of licorice ingredients; Sakagami, H; InTech, 2017, pp. 59-75.
[43]
Arjumand, W.; Sultana, S. Glycyrrhizic acid: A phytochemical with a protective role against cisplatin-induced genotoxicity and nephrotoxicity. Life Sci., 2011, 89, 422-429.
[44]
Wu, C.H.; Chen, A.Z.; Yen, G.C. Protective effects of glycyrrhizic acid and 18b-glycyrrhetinic acid against cisplatin-induced nephrotoxicity in BALB/c mice. J. Agric. Food Chem., 2015, 63, 1200-1209.
[45]
Ju, S.M.; Kim, M.S.; Jo, Y.S.; Jeon, Y.M.; Bae, J.S.; Pae, H.O.; Jeon, B.H. Licorice and its active compound glycyrrhizic acid ameliorates cisplatin-induced nephrotoxicity through inactivation of p53 by scavenging ROS and overexpression of p21 in human renal proximal tubular epithelial cells. Eur. Rev. Med. Pharmacol. Sci., 2017, 21, 890-899.
[46]
Patricia, M.L.A.; Bello, A.C.; Pedraza, C.J. Isoliquiritigenin pretreatment attenuates cisplatin induced proximal tubular cells (LLC-PK1) death and enhances the toxicity induced by this drug in bladder cancer T24 cell line. Food Chem. Toxicol., 2017, 109, 143-154.
[47]
Taty, A.K.; Elvy, S.M.R.; Das, S.; Faizah, O.; Hamzaini, A.H. Anti-inflammatory effect of Curcuma longa (turmeric) on collagen-induced arthritis: An anatomico-radiological study. Clin. Ter., 2011, 162, 201-207.
[48]
Zahidah, A.F.; Faizah, O.; Nur, A.K.; Taty, A.K. Curcumin as an anti-arthritic agent in collagen-induced arthritic Sprague-dawley rats. Sains Malays., 2012, 41, 591-595.
[49]
Ueki, M.; Ueno, M.; Morishita, J.; Maekawa, N. Curcumin ameliorates cisplatin-induced nephrotoxicity by inhibiting renal inflammation in mice. J. Biosci. Bioeng., 2013, 115, 547-551.
[50]
Sahin, K.; Orhan, C.; Tuzcu, M.; Muqbil, I.; Sahin, N.; Gencoglu, H.; Guler, O.; Padhye, S.B.; Sarkar, F.H.; Mohammad, R.M. Comparative in vivo evaluations of curcumin and its analog difluorinated curcumin against cisplatin-induced nephrotoxicity. Biol. Trace Elem. Res., 2014, 157, 156-163.
[51]
Kumar, P.; Barua, C.C.; Sulakhiya, K.; Sharma, R.K. Curcumin ameliorates cisplatin-induced nephrotoxicity and potentiates its anticancer activity in SD rats: Potential role of curcumin in breast cancer chemotherapy. Front. Pharmacol., 2017, 8, 132.
[52]
Topcu, T.Y.; Sapmaz, M.M.; Karaca, T. Curcumin counteracts cisplatin-induced nephrotoxicity by preventing renal tubular cell apoptosis. Ren. Fail., 2016, 38, 1741-1748.
[53]
Song, K.I.; Park, J.Y.; Lee, S.; Lee, D.; Jang, H.J.; Kim, S.N.; Ko, H.; Kim, H.Y.; Lee, J.W.; Hwang, G.S.; Kang, K.S.; Yamabe, N. Protective effect of tetrahydrocurcumin against cisplatin-induced renal damage: In vitro and in vivo studies. Planta Med., 2015, 81, 286-291.
[54]
Kumar, P.; Sulakhiya, K.; Barua, C.C.; Mundhe, N. TNF-a, IL-6 and IL-10 expressions, responsible for disparity in action of curcumin against cisplatin-induced nephrotoxicity in rats. Mol. Cell. Biochem., 2017, 431, 113-122.
[55]
Waseem, M.; Parvez, S. Mitochondrial dysfunction mediated cisplatin induced toxicity: Modulatory role of curcumin. Food Chem. Toxicol., 2013, 53, 334-342.
[56]
Ortega, M.D.B.; Aparicio, T.O.E.; Garcia, A.F.E.; Leon, C.J.C.; Tapia, E.; Molina, J.E.; Hernandez, P.R.; Sanchez, L.L.G.; Barrera, O.D.; Pedraza, C.J. Curcumin prevents cisplatin-induced renal alterations in mitochondrial bioenergetics and dynamic. Food Chem. Toxicol., 2017, 107, 373-385.
[57]
Ulu, R.; Arslan, O.; Dogukan, A.; Gozel, N.; Tuzcu, M.; Gencoglu, H.; Yigit, I.P.; Ozercan, I.H.; Ilhan, N.; Sahin, K. Effects of curcumin on anion/cation transporters and multidrug response proteins in cisplatin induced nephrotoxicity. Int. J. Clin. Exp. Med., 2016, 9, 19623-19633.
[58]
Abd, G.N.; Choy, K.W.; Hui, C.K.; Mohd, Y.Y.A.; Wan, N.W.Z. Acacia honey accelerates in vitro corneal ulcer wound healing model. BMC Complement. Altern. Med., 2016, 16, 259.
[59]
Ibrahim, A.; Eldaim, M.A.; Abdel-Daim, M.M. Nephroprotective effect of bee honey and royal jelly against subchronic cisplatin toxicity in rats. Cytotechnology, 2016, 68, 1039-1048.
[60]
Hamad, R.; Jayakumar, C.; Ranganathan, P.; Mohamed, R.; El-Hamamy, M.M.; Dessouki, A.A.; Ibrahim, A.; Ramesh, G. Honey feeding protects kidney against cisplatin nephrotoxicity through suppression of inflammation. Clin. Exp. Pharmacol. Physiol., 2015, 42, 843-848.
[61]
Huang, H.; Shen, Z.; Geng, Q.; Wu, Z.; Shi, P.; Miao, X. Protective effect of Schisandra chinensis bee pollen extract on liver and kidney injury induced by cisplatin in rats. Biomed. Pharmacother., 2017, 95, 1765-1776.
[62]
Osama, H.; Abdullah, A.; Gamal, B.; Emad, D.; Sayed, D.; Hussein, E.; Mahfouz, E.; Tharwat, J.; Sayed, S.; Medhat, S.; Bahaa, T.; Abdelrahim, M.E.A. Effect of honey and royal jelly against cisplatin-induced nephrotoxicity in patients with cancer. J. Am. Coll. Nutr., 2017, 36, 342-346.
[63]
Olaku, O.O.; Ojukwu, M.O.; Zia, F.Z.; White, J.D. The role of grape seed extract in the treatment of chemo/radiotherapy induced toxicity: A systematic review of preclinical studies. Nutr. Cancer, 2015, 67, 730-740.
[64]
Ko, J.L.; Tsai, C.H.; Liu, T.C.; Lin, M.Y.; Lin, H.L.; Ou, C.C. Differential effects of grape juice on gastric emptying and renal function from cisplatin-induced acute adverse toxicity. Hum. Exp. Toxicol., 2016, 35, 808-817.
[65]
Saad, A.A.; Youssef, M.I.; El-Shennawy, L.K. Cisplatin induced damage in kidney genomic DNA and nephrotoxicity in male rats: The protective effect of grape seed proanthocyanidin extract. Food Chem. Toxicol., 2009, 47, 1499-1506.
[66]
Gao, Z.; Liu, G.; Hu, Z.; Li, X.; Yang, X.; Jiang, B.; Li, X. Grape seed proanthocyanidin extract protects from cisplatin-induced nephrotoxicity by inhibiting endoplasmic reticulum stress-induced apoptosis. Mol. Med. Rep., 2014, 9, 801-807.
[67]
Hassan, H.A.; Edrees, G.M.; El-Gamel, E.M.; El-Sayed, E.A. Amelioration of cisplatin-induced nephrotoxicity by grape seed extract and fish oil is mediated by lowering oxidative stress and DNA damage. Cytotechnology, 2014, 66, 419-429.
[68]
Shuid, A.N.; Mohamed, I.N. Pomegranate use to attenuate bone loss in major musculoskeletal diseases: An evidence-based review. Curr. Drug Targets, 2013, 14, 1565-1578.
[69]
Bakir, S.; Yazgan, U.C.; Ibiloglu, I.; Elbey, B.; Kizil, M.; Kelle, M. The protective effect of pomegranate extract against cisplatin toxicity in rat liver and kidney tissue. Arch. Physiol. Biochem., 2015, 121, 152-156.
[70]
Karwasra, R.; Kalra, P.; Gupta, Y.K.; Saini, D.; Kumar, A.; Singh, S. Antioxidant and anti-inflammatory potential of pomegranate rind extract to ameliorate cisplatin-induced acute kidney injury. Food Funct., 2016, 7, 3091-3101.
[71]
Boroushaki, M.T.; Rajabian, A.; Farzadnia, M.; Hoseini, A.; Poorlashkari, M.; Taghavi, A.; Dolati, K.; Bazmandegan, G. Protective effect of pomegranate seed oil against cisplatin-induced nephrotoxicity in rat. Ren. Fail., 2015, 37, 1338-1343.
[72]
Motamedi, F.; Nematbakhsh, M.; Monajemi, R.; Pezeshki, Z.; Talebi, A.; Zolfaghari, B.; Mansoori, A.; Saberi, S.; Dehghani, A.; Ashrafi, F. Effect of pomegranate flower extract on cisplatin-induced nephrotoxicity in rats. J. Nephropathol., 2014, 3, 133-138.
[73]
Jilanchi, S.; Nematbakhsh, M.; Mazaheri, S.; Talebi, A.; Zolfaghari, B.; Pezeshki, Z.; Eshraghi-Jazi, F.; Moeini, M. Pomegranate flower extract does not prevent cisplatin-induced nephrotoxicity in female rats. Int. J. Prev. Med., 2014, 5, 1621-1625.
[74]
Nematbakhsh, M.; Pezeshki, Z. Eshraghi, Jazi, F.; Mazaheri, B.; Moeini, M.; Safari, T.; Azarkish, F, Moslemi, F.; Maleki, M.; Rezaei, A.; Saberi, S, Dehghani, A.; Malek, M.; Mansouri, A.; Ghasemi, M.; Zeinali, F.; Zamani, Z.; Navidi, M.; Jilanchi, S.; Shirdavani, S.; Ashrafi, F. Cisplatin-induced nephrotoxicity; protective supplements and gender differences. Asian Pac. J. Cancer Prev., 2017, 18, 295-314.
[75]
Chen, M.F.; Yang, C.M.; Su, C.M.; Hu, M.L. Vitamin C protects against cisplatin-induced nephrotoxicity and damage without reducing its effectiveness in C57BL/6 mice xenografted with Lewis lung carcinoma. Nutr. Cancer, 2014, 66, 1085-1091.
[76]
Guindon, J.; Deng, L.; Fan, B.; Wager-Miller, J.; Hohmann, A.G. Optimization of a cisplatin model of chemotherapy-induced peripheral neuropathy in mice: Use of vitamin C and sodium bicarbonate pretreatments to reduce nephrotoxicity and improve animal health status. Mol. Pain, 2014, 10, 56.
[77]
Pace, A.; Giannarelli, D.; Galie, E.; Savarese, A.; Carpano, S.; Della, G.M.; Pozzi, A.; Silvani, A.; Gaviani, P.; Scaioli, V.; Jandolo, B.; Bove, L.; Cognetti, F. Vitamin E neuroprotection for cisplatin neuropathy: A randomized, placebo-controlled trial. Neurology, 2010, 74, 762-766.
[78]
Nematbakhsh, M.; Pezeshki, Z. Sex-related difference in nitric oxide metabolites levels after nephroprotectant supplementation administration against cisplatin-induced nephrotoxicity in wistar rat model: The role of vitamin E, erythropoietin, or N-acetylcysteine. ISRN Nephrol., 2013, 2013612675
[79]
Hassan, I.; Chibber, S.; Naseem, I. Ameliorative effect of riboflavin on the cisplatin induced nephrotoxicity and hepatotoxicity under photoillumination. Food Chem. Toxicol., 2010, 48, 2052-2058.
[80]
Sato, S.; Hori, Y.; Yamate, J.; Saito, T.; Kurasaki, M.; Hatai, A. Protective effect of dietary azuki bean (Vigna angularis) seed coats against renal interstitial fibrosis of rats induced by cisplatin. Nutrition, 2005, 21, 504-511.
[81]
Sen, S.; De, B.; Devanna, N.; Chakraborty, R. Cisplatin-induced nephrotoxicity in mice: Protective role of Leea asiatica leaves. Ren. Fail., 2013, 35, 1412-1417.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy