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Abstract

A fully dynamic group signature scheme with member registration and member revocation with
strong security is desirable when using group signatures in real life. Langlois, Ling, Nguyen,
and Wang (PKC 2014) presented the first lattice-based group signature scheme with member
revocation. Even though their scheme employs the most flexible revocation approach called
Verifier-local revocation, their scheme relied on a weaker security notion and did not provide a
member registration mechanism. In this paper, we obtain a fully dynamic group signature scheme
by proposing a group joining protocol to their scheme. Moreover we discuss the difficulties of
achieving both fully-dynamicity and strong security at the same time and provide a scheme with
solutions for those difficulties.

Keywords: Lattice-Based Group Signatures, Verifier-Local Revocation, Member Registration,
Dynamical-Almost-Full Anonymity

1 Introduction

In 1991 Chaum and van Heyst [9] introduced group signature schemes. In group signature schemes,
any valid group member can issue signatures as a representer of the group while hiding their identity
(anonymity). On the other hand, in case of dispute, the tracing authority can identify the owner of the
signature (traceability). Since the group signatures were introduced, many group signature schemes have
been proposed for different aspects. While some of them were focused on the efficiency of the scheme,
some of them were concentrated on the security of the scheme. However, to use group signatures in
practice, group signatures should be simple, efficient, and secured while being dynamic rather than
static. Thus, group signature schemes should provide both member registration and revocation. New
users who want to join the group should be able to register at any time. In real world, usually, the users
are allowed to select their secret signing keys, and the authority validates the keys and issues member
certificates. Further, group signature schemes should support member revocation. For instance, cheated
members should be removed from the group and should be restricted them from signing in future. In case
of static groups, the whole system has to be re-initialized once a member is registered or removed. Thus,
providing a group signature scheme that dynamically facilitates both member registration and member
revocation became a desirable work.

There are several approaches to realize revocation. The simplest revocation method is generating
keys newly when a member is revoked [2]. Thus the group manager creates and re-distributes the group
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public key and the secret signing keys for the verifiers and the existing members. Since the keys are not
generated for the revoking member, he cannot sign in future. However, producing and re-distributing
keys for each member revocation is not suitable for a large group. Another approach is sending a single
short public broadcast message to all members and verifiers [6]. This approach is also not convenient to
use in practice as it requires to update both the members and the verifiers after each revocation. Brickell
[4] proposed another revocation technique called Verifier-local Revocation (VLR), which was formalized
by Boneh et al. [3] in their group signature scheme and which requires to update only the verifiers with
revocation messages. Verifier-local Revocation (VLR) group signature schemes use a token system.
Thus, every member of the group has a token other than their secret signing key. When a member is
revoked, the group manager sets the revoking member’s token to a list called Revocation List (RL) and
passes RL to the verifiers. At the verification stage of a signature, the verifier validates the signature is
generated on the given message, and he confirms the signer’s revocation token is not in the latest RL.
Since VLR requires to send the revocation information only to the verifiers who are less in number than
members in practical situations, VLR seems to be the most suitable approach for any size of groups.
However, most of the existing VLR group signature schemes operate in the bilinear map setting which
will be insecure when the quantum computers become a reality.

In recent years, lattice-based group signatures have been an active research topic, because lattice-
based cryptography considered as the most promising candidate against quantum computers. The lattice-
based cryptography provides provable security under worst-case hardness assumptions. The first lattice-
based group signature scheme was introduced by Gorden et al. [[11] in 2010. However, their scheme
faced a linear-barrier problem, i.e., the signature size and the group public key size increase with the
number of members. Then, Camenisch et al. [[7] proposed a scheme with an anonymous token system.
However, their scheme’s signature size is still linear in the number of members. Finally, Languillaumie
et al. [12] suggested a scheme that overcomes the linear-barrier problem. However, none of the first
three lattice-based group signature schemes are for dynamic groups. They all are for static groups. The
first lattice-based group signature scheme that supports member revocation was suggested by Langlois et
al. [13] in 2014. The scheme in [13]] manages member revocation using Verifier-local revocation (VLR)
mechanism which is the most flexible revocation approach up to now. Their scheme operates within
the structure of a Bonsai tree of hard random lattices [8]. However, the noticeable disadvantage of this
scheme is that it satisfies a weaker security notion of selfless-anonymity. On the other hand, since the
scheme [13] facilitates only member revocation it cannot consider as a fully dynamic group signature
scheme. To be a fully dynamic group signature scheme it should also satisfy member registration. Libert
et al. [14]] proposed a scheme based on lattices with member registration with a new tool where new users
can join anonymously by contacting the group manager with their public keys. However, the scheme in
[14] does not facilitate member revocation. Recently, Ling et al. [16] presented a fully dynamic group
signature scheme based on lattices using accumulators, which seems to be less efficient than using VLR
mechanism to manage member revocation in a larger group.

This paper aims to achieve full dynamicity for the existing VLR group signature scheme given in
[LL3].

2  Our Contribution

The group signature scheme given in [13]] provides a dynamic group signature scheme with a simple and
efficient member revocation method with verifier-local revocation (VLR). However, it fails to achieve full
dynamicity because it does not provide member registration. This paper delivers a new group signature
scheme by adding a member registration facility to the VLR group signature scheme given in [13]]. In
the group signature scheme with VLR [13] all the keys are generated at the beginning and all the keys



Achieving Strong Security and Registration for Lattice-GS with VLR M. N. S. Perera, T. Koshiba

are fixed at that time. Since they have only considered about the member revocation mechanism, they
have defined all the keys at the beginning. But in case of applying member registration, keys for the
members should be generated at the time of their joining. Moreover, the scheme should allow the new
users to select their own secret signing keys anonymously. Thus, in this work, we suggest a group joining
protocol which enables new members to choose their secret signing keys and allows the group manager
to validate the secret keys of new members and issue the member certifications. In such manner, new
users who want to join the group interact with the group manager via the joining-protocol. The new user
selects his secret signing key and communicates with the group manager. The group manager checks the
validity of the new user. If the new user is valid, then the group manager issues member certification.
Here, for the member certificate generation, we use previous scheme’s [13] secret signing key generation
process. Thus, the revocation token of the user will be same as the revocation token used in the scheme
[L3]]. We use a registration table called reg to store the member information.

The scheme in [13] has only one authority, the group manager. Our scheme has two managers
because we separate authority of issuing member certification and authority of canceling the anonymity
of the signatures. Thus, in our new scheme the group manager (issuer) issues member certification and
revokes members while the tracing manager (opener) identifies the signers by opening the signatures. As
a result, we generate two separate authority keys for the two managers in our scheme.

The previous VLR group signature scheme in [[13] satisfied a weaker security notion, the selfless-
anonymity. The scheme given in [[15] used a stronger security notion proposed in [15] (BMWO03 model).
However, the scheme in [15] is for static groups. The BMWO03 model facilitates two security require-
ments, namely, full-anonymity and full-traceability. The full-anonymity is much stronger than the
selfless-anonymity. In the full-anonymity game between a challenger and an adversary, all the secret
signing keys are given to the adversary. But in case of the scheme in [13]], the full-anonymity cannot be
applied directly for two reasons. The scheme in [13]] has revocation tokens other than the secret sign-
ing keys. The revocation tokens cannot be revealed to the adversary because the adversary can identify
the owner of the signature by using the revocation-token. By executing the signature verification algo-
rithm Verify with the revocation token of any member, the adversary can confirm whether that member
generated the signature or not. Moreover, since the revocation token is a part of the secret signing key
in the scheme in [13]], for the same reason defined above, we cannot give any secret signing keys to
the adversary in [13]. Because of these reasons the scheme in [13] relies on a weaker security notion,
the selfless-anonymity, which will not provide any secret information without any request and not pro-
vide any information related to the challenging indices. A security notion called dynamical-almost-full
anonymity suggested in [[19] allows to provide all the member secret signing keys to the adversary and it
requires to separate the tokens from the secret signing keys (tokens should not be derived from the secret
signing keys). In our scheme, since we allow the new users to select their secret signing keys, we can use
the revocation token generation given in [13] without using a new revocation token generation method
and achieve stronger security than the selfless-anonymity. Thus, the procedure given in [13]] for key
generations of members will be executed by the group manager in our scheme to generate the member
certification with member revocation tokens. Thus to increase the level of the security in our scheme we
can employ the dynamical-almost-full anonymity which was proposed for fully dynamic group signature
schemes.

Moreover, we provide an explicit tracing algorithm to trace signers. In the previous VLR group
signature scheme [13]], they used an implicit tracing algorithm which requires to execute Verify in linear
with the number of members until Verify returns invalid. Since it is not an efficient tracing mechanism for
large groups, we provide an explicit tracing algorithm in our scheme without using the implicit tracing
algorithm given in [13]].

In this paper, we show how to succeed member registration for a scheme with VLR from lattices
and how to achieve stronger security than the original VLR group signature scheme. Thus comparing to
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Table 1: Parameters of the scheme
Parameter Value or Asymptotic bound
Modulus ¢ o(n*logn)
Dimension m > 2nloggqg
Gaussian parameter & o(y/nlogglogn)
Integer norm bound f [o-logm]s.t. (4B+1)><¢q
Number of decomposition p llogB] +1
: Bi=1B/21:B2=[(B—B1)/2];
Sequence of integers: 3, B2, B3, - - .,
“ gorsPuo PP Bo | gy — (B i~ po)/2l:... By = 1
Number of protocol repetitions ¢ o(logn)

the previous scheme given in [13]] our scheme provides member registration, two separate managers for
managing members and tracing signers, the explicit tracing mechanism, and stronger security.

3 Preliminaries

3.1 Notations

For any integer k > 1, we denote the set of integers {1,...,k} by [k]. We denote matrices by bold upper-
case letters such as A, and vectors by bold lower-case letters, such as x. We assume that all vectors are in
column form. The concatenation of matrices A € R”” and B € R"*X, is denoted by [A|B] € R™*("+K),

The concatenation of vectors x € R” and y € R¥ is denoted by (x||y) € R”+*, If S is a finite set, b &y
means that b is chosen uniformly at random from S.

Throughout this paper we present security parameter as n and maximum number of members in a
group as N = 2¢ € poly(n). The norm bound for LWE noises is b such that ¢/b = £&'(n). Let x be a
b-bounded distribution over Z. Let k| :=m+ ¢ and k; := n+m+ £. We choose other parameters as in
scheme [13]] as given in the table m

Let 74: {0,1}* — ZZXZ, . 0,1} — {1,2,3}', and ¥ {0,1}* — Z*™ be hash functions,
modeled as a random oracle. Select one-time signature scheme OTS = (OGen, OSign, OVer), where
OGen is the key generation algorithm of OTS key pair (ovk, osk), OSign is signature generation and
OVer is signature verification functions.

3.2 Lattices

Let g be a prime and B = [by |-+ - |b,,] € Z;*" be linearly independent vectors in Z;. The r-dimensional
lattice A(B) for B is defined as

AB)={y€Z" | y=Bx mod g for some x € Zg},

which is the set of all linear combinations of columns of B and m is the rank of B.

We consider a discrete Gaussian distribution for a lattice. The Gaussian function centered in a vector
¢ with parameter s > 0 is defined as p;¢(X) = e I=¢)/sI” and the corresponding probability density
function proportional to p; is defined as D;¢(X) = psc(x)/s" for all x € R". The discrete Gaussian
distribution with respect to a lattice A is defined as D ¢ (X) = Dy ¢(X)/D;.c(A) = ps.e(X)/psc(A) for all
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x € A. Since Z™ is also a lattice, we can define a discrete Gaussian distribution for Z™. By Dz o, we
denote the discrete Gaussian distribution for Z™ around the origin with the standard deviation G.

3.3 Lattice-Related Properties

The security of our scheme depends on the hardness of following lattice problems.

3.3.1 Learning With Errors (LWE)

Definition 1 ([18])). LWE is parametrized by n,m > 1,q > 2, and X. Fors € Zg, the distribution Ag y is
obtained by sampling a € Zy uniformly at random and e <— X, and outputting the pair (a,a” -s+e).

There are two version of LWE problem. Search-LWE is to find the secret s and Decision-LWE is
to distinguish LWE samples and samples chosen according to the uniformly distribution. We use the
hardness of Decision-LWE problem.

For a prime power ¢, b > \/nw(logn), and distribution y, solving LWE, 4, problem is at least as
hard as solving SIV Py (Shortest Independent Vector Problem), where y = O(nq/b) [20].

3.3.2  Short Integer Solution (SIS, ,, , 5)

Definition 2 ([18. 20]). Given m uniformly random vectors a; € Zy, forming the columns of a matrix
A € Z"™, find a nonzero vector x € A*(A) such that ||x|| < B and Ax =0 mod g.

3.3.3 Inhomogeneous Short Integer Solution (ISIS,, ,, , 5)

Definition 3 ([13]). Given m uniformly random vectors a; € Zy, forming the columns of a matrix A €
Zy™, find a vector x € A (A) such that ||x|| < B.

For any m, B = poly(n), and for any g > 8 - @(v/nlogn), solving SIS, ,, , g problem or ISIS,, ,, , 5
problem with non-negligible probability is at least as hard as solving SIV P, problem, for some y =

O(B+/n) [10].

3.4 Lattice-Related Trapdoor generation and the preimage sampling algorithms

We use a randomized nearest-plane algorithm, called, SampleD which was discussed in [10} [17] and
preimage sampleable trapdoor functions (PSTFs) GenTrap and SamplePre, which were discussed in
[LLO, (17, (1]

e SampleD(R, A, u, o) outputs x € Z" sampled from the distribution Dz & for any vector u in the
image of A, a trapdoor R and 0 = w(y/nlogglogn). The output x should satisfy the condition
A-x=umod gq.

e GenTrap(n, m, q) is an efficient randomized algorithm that outputs a matrix A € Zy*™ and a
trapdoor matrix R for given any integers n > 1,q > 2, and sufficiently large m = 2nlogg. The
distribution of the output A is negl(n)-far from the uniform distribution.

e SamplePre(A, R, u, o) outputs a sample e € Z™ from a distribution that is within negligible
statistical distance of Dju(4) 5, On input a matrix A € Zy*™, a trapdoor basis R, a target image
7(A),

u € Zy, and the standard deviation ¢ > @(y/logm).

5
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4 Techniques

This section first recalls the scheme given in [13] and then provides the new feature, member registration.
Finally, this section shows how to achieve stronger security for the scheme with member registration and
revocation.

4.1 VLR group signature scheme based on lattices

The main building block of the scheme in [13]] is a Stern-like [21] interactive argument system, that
allows signer to convince the verifier his validity in zero-knowledge. Their scheme operates within
a Bonsai tree structure specified by a matrix A = [Ao|AJ|A]|...|AYA]}] € ZZX(MH)m, and a vector
u € Zy. The signer has to prove that he is a valid member while hiding his identity d and his Bon-

(t+1)m_

sai signature a small vector z € Z For this he uses an extended vector secret signing key

x = (xo|x?|[x}]]...|[x0||x}) € ZC*m where x}fdm,...,x,}fdm are zero-blocks added to the vec-
tor z. In the scheme given in [13], group public keys is (A, u), member signing key is gsk[d] =
x(D = (xo||x}[[x}]]...||x0[|x}) € Z{*FD™ and member revocation token is grt[d] = Ao - Xo € Z..

In general VLR group signature schemes consists of three algorithms.

e KeyGen(n,N): This randomized PPT algorithm takes as inputs n and N. Then it outputs a group
public key gpk, a vector of user secret keys gsk = (gsk|[0],gsk[1],...,gsk[N — 1]), and a vector of
user revocation tokens grt = (grt[0], grt[1],...,grt[N — 1]), where gsk[i| is the i-th user’s secret
key and grt[i] is his revocation token.

e Sign(gpk, gsk[d], M): This randomized algorithm takes as inputs a secret signing key gsk[d], the
group public key gpk and a message M € {0, 1}* and generates a group signature X on M.

o Verify(gpk, X, M, RL): This deterministic algorithm verifies whether the given X is a valid signature
using the given group public key gpk and the message M. Then validates the signer not being
revoked using RL.

Implicit Tracing Algorithm: Any VLR group signature scheme has an implicit tracing algorithm that
takes grt as the secret tracing key. This algorithm can trace a signature to at least one group user who
generated it. For each i =0,...,N— 1 run Verify(gpk, £, M, RL). It outputs the index of the first user for
the verification algorithm returns invalid. The tracing algorithm fails if this algorithm verifies properly
for all users on the given signature. Since the implicit tracing algorithm requires to run Verify for all
members, it is inappropriate for a large group.

4.2 Adding member registration

Since previous scheme in [[13] only supports member revocation using VLR, it is not a fully dynamic
group signature scheme. In this section, we discuss how to apply member registration feature to the
previous scheme and produce a new scheme with both member registration and revocation.

We suggest a joining protocol as the solution for the member registration requirement. Here we use
the techniques used in [[14]] to provide an efficient member registration protocol.

Joining Protocol:

Any user i having a long-term public and private key pair (upk[i] and usk[i]) samples a short vector
W; <= Dyan 5 as his secret signing key, which is used to compute a syndrome y; = F-w; € Zg" with

6
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public parameter F. Then the new user i generates a signature sig; = Sign(usk|i],y;) and sends (sig;,y;)
to the group manager. The group manager checks the validity of sig; using upk[i] and checks whether
y; is used by previous members. If sig; is valid and y; is not used before, then he continues issuing the
member certificate.

For generating the member certifications, we use the techniques used in [13] to generate members’
secret keys. First, the group manager selects a fresh ¢-bit string as the index d of the new user and

then samples x'fm yeen ,x?m <> Dzn & and computes z = Zle A?m -xfm mod g. Next the group manager
samples X € Z™ and defines x = (xo||x?||x}||...||x0||x}), where xrd“], . ,xéfdm are zero vectors 0.

The revocation token of the new user is grt = A - Xo. Finally, the group manager stores the new member’s
information (d,y;, usk[i], sig;,x,grt, 1) (by inserting 1 for the new user we represent member is active) in
reg and sends the member certificate to the new member.

We assume the new user and the group manager interact through a secured channel.

4.3 Achieving stronger security

The general VLR group signature schemes satisfy a weaker security notion called selfless-anonymity.
However techniques in [19] provide stronger security than the selfless-anonymity called dynamical-
almost-full anonymity for the VLR group signature schemes with both member registration and revo-
cation. Since our scheme serves both member registration and revocation with VLR we employ the
dynamical-almost-full anonymity which is defined below to secure our scheme.

The dynamical-almost-full anonymity game EXpypis 4 (1, N) between a challenger and an adversary

is as below.

e Initial Phase: The challenger C runs KeyGen to obtain a group public key gpk, authorities’ secret
keys (ik,0k). Then gives gpk and existing group members’ secret signing keys gsk to the adversary
A.

e Query Phase: The adversary A can add new users any number of times via registration query
and C checks whether the new user details are already exist in the registration table reg. The
group manager adds the new user to the group if the new user is valid and not in reg. Then C
generates revocation token and certificate and saves new user’s information in reg. However, C
will not provide the revocation token of the newly added user to A at the time of registering. Thus,
the member certification cert will be given without the revocation token. Moreover, A can query
revocation token of any user and can access the opening oracle with any message M and a valid
signature X.

e Challenge Phase: The adversary A outputs a message M™ and two distinct identities iy, i;. If the
revocation tokens of iy, i; are not revealed by A and if the challenged indices are indices of newly

added users by A, then C selects a bit b & {0,1}, generates ©* = Sign(gpk, gsk[ip], cert;,,M*) and
sends X* to A. The adversary A still can query the opening oracle with any signature except the
challenging signature. A can query revocation tokens except for challenged indices. However, A
can add users to the group as before.

e Guessing Phase: Finally, the adversary A outputs a bit »'. If ¥’ = b, then A wins.

Definition 4. Let A be an adversary against the anonymity of a fully dynamic group signature scheme
FDGS. The advantage of A in the above game is

Advipgs a(n,N) =| PrlExpEpes a(n,N) = 1] = 1/2 ] .
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We say that a fully dynamic group signature scheme is dynamical-almost-full anonymous if EXpEpcs 4 is

negligible.

S New VLR group signature scheme with member registration

In this section, we first describe our new lattice-based VLR group signature scheme with member regis-
tration and revocation. Then we present the underlying interactive protocol in brief.

5.1 Description of the Scheme

Our scheme consists of two extra algorithms Join and Open than the algorithms given in [13].

Key Generation: This randomized algorithm KeyGen(n, N) creates a group public key gpk, the
group manager key ik, and the tracing manager key ok.

1. Run GenTrap(n, m, q) to get Ag € Zy™™ and a trapdoor Ty.
2. Sample u & Ly.

3. Sample A® & Zy™ for each b € {0,1} and i € [£].

4. Set the matrix A = [Ao|AYA!]...[AYA}] € Z<@0HDm,

5. Run GenTrap(n,m,q) to obtain B € Z;*™ and a trapdoor Tg.

6. Select an additional random matrix F = U (Zg"*™).
Finally we obtain, gpk = (A,B,F,u), ik = Ty, ok = Tp.

Join: A new user i, who has a personal public and private key pair (upk[i], usk[i]) interacts with the
group manager GM (issuer) to join the group, through the joining protocol.

1. User i samples a vector W; <— Dyun 5, and computes y; < F-w; € Z‘q“l. Then he generates an
ordinary digital signature sig; <— Sign(usk]i],y;) and sends both sig; and y;, whose binary repre-
sentation bin(y;) consists of 4n[logg| = 2m bits to the group manager GM.

2. GM confirms y; was not previously used by any member and verifies sig; is a valid signature
generated on y;, using Vf(upK|i],y;, sig;). GM aborts if any condition fails. Otherwise, GM creates
a certificate for the key certy = Sign(ik,y;) and proceeds as follows.

(a) Select a fresh /-bit string as the index d and let d = d[1]...d[¢] € {0, 1}’ be the binary repre-
sentation of d.

(b) Sample vectors xfm .. .x?m

(c) Compute z = Zle A[.lm -xdm

(d) Getxg € Z" < SampleD(Ta,Ap,u—1z,0).

() Letx, "

(f) Define x = (xo|[x||x}]|...[[x?||x}) € E“Dm If ||x||.. < B then proceed else abort.

— DZm7G.

mod gq.

1-d|[(
X, 4 be zero vectors 0™.
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(g) Let the revocation token of the new user i be grt[i] = Ag - Xo.

Finally, GM saves the new member’s details (d, y;, usk|i], sig;, x, grt[i], 1) in reg and sends the mem-
ber certificate cert; = (certy,d, X).

Signing : The randomized algorithm Sign(gpk, gsk|i], cert;, M) generates X on a message M, where
the user i secret signing key gsk[i]=w;.

1. Run OGen(1") to obtain a key pair (ovk, osk).

2. Encrypt the index d as follows. Let G = .77 (ovk). Sample s < x”, e; < x™ and e, + ', and
compute the ciphertext (¢; = B”s+e;, ¢; = G's+e, + |¢/2]d).

3. Sample p & 10,1}, let V=9 (A,u,B,M,p) € Z*".

4. Compute v=V-(Ap-X9)+e€; modgq (||e;||.. < B with overwhelming probability and Ay - xg is
the revocation token grt of user 7).

5. Confirm that cert is generated on y; by executing Verify(A,y;,cert;). Then form

B’ ky xk ¢ k ° k
PI(GT Im+g)€Zq1X2;C:<c >€Z];e: e € 7™ (D)
2

€2

and repeat the zero knowledge interactive protocol of the commitment described in Section
t = o(logn) times with the public parameter (A, F, u, V, v, P, ¢) and prover’s witness (x, e, e) to
make the soundness error negligible and prove that user is certified. Then make it non-interactive
using the Fiat-Shamir heuristic as a triple, IT = ({CMT®W}._, CH,{RSPW}_,), where CH =
({chVY_)) = BMACMTOY_ e1,e2).

6. Compute OTS;sig = OSig(osk, (¢1,¢2,1T)).

7. Output signature X = (ovk, (¢, ¢2),I1,sig,v,p).

Verification : Verify(gpk, M, £, RL = {{u,};}) checks whether the given X is valid on the given M
and signer is a valid member as follows.

1. Parse X as (ovk, (¢1,¢2),11,5ig,v,p), and get V=9 (A, u,B,M,p) € Z;™".
2. If OVer(ovk, (¢, ¢2),I1, sig) = 0 then return 0.

3. Parse [Tas ({CMT® Y} _ {Ch®Y_ {RSPRI}_ ).

4. 1t (Ch, ... ,Ch")) £ (M, {CMT W} _, ¢;,¢,) return 0 else proceed.

5. Form P, ¢ as in and for k =1 to ¢ run the verification steps of the commitment scheme to
validate RSP with respect to CM T® and ch®. 1f any of the conditions fails then output invalid
and hold.

6. For each u; € RL compute e; =v—V.u; mod g to check whether there exists an index i such that
||e;||.. < B. If so return invalid.
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7. Return valid.
Open : Open(ok, M, X, reg) functions as follows, where ok = Tg.

1. Let G = 7 (ovk).

2. Then for i € [¢], sample y; «+— SamplePre(Tg,B,g;, o).

3. LetY =[y]...|y/] € Z™, where B-Y =G.

4. Compute d’ = (df,....d)) =c;—Y" -¢, € Z.

5. For each i € ], if d] is closer to O than to |¢/2] modulos q, then let d; = 0. Otherwise, let d; = 1.

6. Create d = (d},...,ds) € {0,1}" and return d.

5.2 The Underlying ZKAoK for the Group Signature Scheme

The Stern-like [21]] interactive system allows the signer to convince the verifier, he is a certified and
valid group member who followed the signature generation correctly. The public parameters consists of
matrices A = [Ag|AYA![...[AYA}] € Z2< UM F e 234,V e 77", and P € Z{ %2, and vectors
ucZl, veZ: ceZb The prover's inputs are the vectors x = (xo| x{||x{||...[|x}||x}) € 7,2t )m,
el «— x" we[-B,B]*, yec{0,1}*, and e € Z*. The prover’s goal is to convince the verifier the
following four statements.
1.A-x=u mod g and x € Secretg(d).
2. |le1]le < B and V- (Ag-xp)+€; =v modgq.
3. F-w=Hy,x2n-y modgq.
4. Pe+ (05f|||g/2]d) =¢ mod q.

To prove the goal 1 and 2 we can directly use the interactive protocol given in [13]. We can use the
proof provided in [[14] for the goal 3 and the proof given in [[15] for the goal 4. We can combined all the
proofs together and use as the interactive protocol for our scheme.

6 Correctness and Security Analysis of the Scheme
In this section we show the correctness and the security of our scheme. First, we provide the correctness

of the proposed scheme. Then we provide the anonymity of our scheme under the hardness of LWE
problem and the traceability and non-frameability under the hardness of SIS problem.

6.1 Correctness

For all gpk, gsk, and grt,
1. Verify(gpk, M, Sign(gpk, gsk[i], cert;,M),RL) = Valid and grt[i] ¢ RL .
2. Open(gpk, ok, M, Sign(gpk, gsk|i], cert;,M),reg) =i

10
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6.2 Anonymity

Theorem 1. In the random oracle model, the proposed scheme is dynamical-almost-full anonymous
based on the hardness of LWE,, 4 4.

We use a sequence of games to prove our scheme is dynamical-almost-full anonymous.

Game 0: The challenger C obtains the group public key and authorities’ keys by executing Key-
Gen(1",1V). Then C gives gpk and all the existing group members’ secret keys gsk to the adversary A.
In the query phase, A can add new users to the group through the registration query. In the registration
query, C will accept valid members but will provide the certification cert = (accept,d,€) without the
revocation token information. Later, A can request for revocation tokens of any member, and can access
opening query for any signature. In the challenge phase, first, A sends two indices (ip,i;) and a message
M*. Then C checks whether (iy,i;) are newly added by the adversary and not used to query revocation
tokens. Then C generates the challenging signature X* = (ovk™, (¢, ¢5),IT*, sig*, v*, p*) for a random
bit b + {0,1} and sends to A. The adversary A’s goal is to guess b’ the index is used to generate the
challenging signature. If b’ = b then the experiment returns 1. Otherwise returns 0.

Game 1: In this game, the challenger C slightly modifies Game 0. Here C produces OTS pair
(ovk™, 0sk*) at the beginning of the game. If A accesses the opening oracle with a valid signature X* =
(ovk™, (cf,¢3), 1T, sig*, v*, p*), where ovk = ovk™, C returns a random bit and aborts the game. However,
A accessing opening oracle with a signature X, where ovk = ovk™ contradicts the strong unforgeability
of OTS, and since ovk™® is independent of A’s view, probability of A comes up with ovk = ovk® is
negligible. Even after generating the challenging signature if A comes up with a valid signature £* =
(ovk™, (c},¢3), 1T, sig*, v*, p*), where ovk=0vk®, then sig is a forged one-time signature, which violates
the strong unforgeability of OTS. Thus, without lose of generality we assume that A does not request for
opening of a valid signature, where ovk = ovk™ and C aborting the game is negligible.

Game 2: In this game, C modifies the generation of encrypting matrices B and G and programs the
random oracle .74 accordingly. At the beginning of the game, C chooses uniformly random matrices
B* € Zy*" and G* € Z’;XZ and sets .77{(ovk*)=G". To answer the opening oracle requests of A with
T = (ovk, (¢1,¢2),I1, sig,v,p), C samples a matrix Y < (D 5)¢, and computes G = B* - Y. This G is
used to answer the signature openings in later and keep track of (ovk, Y, G) to be reused if A repeats
the same requests for /%] (ovk). For the view of A, the distribution of G* is statistically close to the real
experiment [10]]. In this way, Game 2 is indistinguishable from Game 1.

Game 3: In this game, without honestly generating the legitimate non-interactive proof I1, C sim-
ulates the proof without using the witness. C invokes the simulator for each k € [¢] and then programs
the random oracle 7% accordingly. The challenging signature X* = (ovk™, (cj,¢3),IT*, sig", v*,p*) is
statistically close to X* in the previous game since the argument system is statistically zero-knowledge.
Thus, Game 3 is indistinguishable from Game 2.

Game 4: In this game, C replaces the original revocation token by a vector sampled uniformly
random. The original game has v =V - grt[i,] +e; mod q. Here C samples a vector t & Zg uniformly
and computes v =V -t+e; mod g, where V is uniformly random over Zg*", e, is sampled from the
error distribution . Since C replaces only the revocation token grt[i,] with t and the rest of the game is
same as Game 3, Game 4 is indistinguishable from Game 3.

Game 5: In this game the challenger C makes v truly uniform by sampling y & Zg . In such away,

C makes revocation token totally independent of the bit . C samples y & Zg and sets v =y. In Game
4, the pair (V, v) is a proper LWE, , » instance. Under the assumption of the LIWE, , , problem is hard,
Game 4 and Game 5 are indistinguishable.

11
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Game 6: In this game C modifies the generation of ciphertext (cj,¢5) in the challenge phase. Let
¢ =z and ¢ =2+ [¢/2]d}, where z; € Z" and z, € Z*" are uniformly random. dj, is the index
of the adversary’s challenging bit. The rest of the game is same as Game 5. Game 5 and Game 6 are
indistinguishable under the assumption of the hardness of LWE, , ,. Indeed, if A can distinguish two
games, then he can also solve the LWE problem.

Game 7: Finally, C makes L* totally independent of the challenging bit b. C samples z| € Zg and
7, € Z" uniformly random and sets ¢; =z} and ¢; = zj. Thus, Game 6 and Game 7 are statistically
indistinguishable. Game 7 is totally independent from the challenger’s bit b. Thus, the advantage of the
adversary in this game is 0.

Hence, these games prove that our scheme is secure with dynamical-almost-full anonymity.

6.3 Traceability

Theorem 2. Based on the hardness of SIS problem, the proposed scheme is traceable, in the random
oracle model.

The adversary A wins traceability game if he can generate a valid signature either traces to an inactive
user or cannot be traced to a user.

We constructs a PPT algorithm B that solves SIS problem with non-negligible probability. The
adversary A, who has gpk and ok outputs (M, X) in the traceability game. B interacts with A by answering
for the queries of A. A can add new users and replace members’ personal public keys. Moreover, he can
query for secret signing keys and revocation tokens of any member.

Finally, A outputs a message M*, set of revocation tokens RL*, and a forgery signature
L*=(ovk™, (¢}, c3),IT*, sig*,v*,p*) on message M*, such that Verify(gpk,M*,X*,RL*) = Valid. B
opens X* and obtains the index. The improved Forking Lemma [5]] guarantees that, with proba-
bility at least 1/2, B can obtain 3-fork involving tuple (M*,{CMT(k)}zzl,cl,cz) running A up to
32-Qp/(e—37") times with the same tape. Rest of the proof flows as in [13] and we can extract
vectors y = (yol[Y{/I¥11]. .. [¥0lly}) € Z3+Dm e; € Z, ¢ € Z™, and w* € {0,1}™ from the proof of
knowledge IT* such that,

1. y € Secretg for some d € {0, 1},and A-y=u modgq.

2. |lef]le < B and v: =V*-(Ag-yy)+ej modg.

3. ||e*||l~ < band (BTs* +e}) =¢; modgq,(G”s*+e5+|q/2]d*) =c, modgq.
4. F-w* =Hy,x2,-h modg.

The zero-knowledge interactive protocol system guarantees that Ay -y, not in RL*, and also Verify
confirms this condition. Thus, the forgery signature tracing to an inactive user is negligible. Moreover,
interactive protocol system guarantees again, when signing the user has to prove the validity with his
witness and needs to encrypt the index.

This concludes our proof of traceability.

6.4 Non-frameability

Theorem 3. Based on the hardness of SIS problem, the proposed scheme is non-frameable, in the
random oracle model.

12



Achieving Strong Security and Registration for Lattice-GS with VLR M. N. S. Perera, T. Koshiba

Suppose there is a frameable adversary A with advantage €, who creates a forgery (M*,X*) that opens
to an innocent user i* who did not sign M*. We construct a PPT algorithm B that solves SISy, 4n.q.p
problem by taking A € Z;‘”X“m and finds a non-zero short vector w € A; (A).

B generates all the public keys and authorities’ keys honestly. Then B interacts with A by sending
group public key gpk and authorities’ keys (ik, ok). B responses to A’s all queries. A can act as a
corrupted group manager and add a new user i to the group. When A requests user i to generate a
signature on a message M, B generates and returns the signature X=(ovk, (¢;,¢;),I1, sig, v).

Finally, A outputs Z*=(ovk*, (¢}, ¢c3),IT*, sig*,v*, p*) signed on a message M* and which opens to i*
who did not sign the message. Thus, (M*,X*) should frame user i*. B has a short vector z;+ = F - x;
mod g. To solve SIS instance B should have another short vector z; = F - x;; mod g. To compute such a
vector, B proceeds by running A sufficient times and applying Improved Forking Lemma [3]. From the
corresponding responses of IT*, B can extract a short vector Xy, where z; = F-x; mod g. According
to the Stern-like proof of knowledge, with overwhelming probability, we say Xy # x;. The difference
h = x; — x;+ is a suitable short non-zero vector, which is a solution for SIS problem.

This proves the non-frameability of the proposed scheme.

7 Conclusion

This work focuses on facilitating member registration mechanism for the scheme given in [[13]. Thus we
suggest a joining protocol to the existing VLR lattice-based group signature scheme [[13]. As a result,
this work provides a new scheme based on lattices with both member registration and member revocation
with VLR using the scheme given in [13]. The proposed scheme consists of a joining-protocol with
member revocation token generation, encryption of the user index that requires for the explicit tracing
mechanism. Moreover, we make the new scheme stronger in security than the selfless-anonymity by
employing the dynamical-almost-full anonymity.
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