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QUASI-STATIC FAILURE CRITERIA FOR CONCRETE

T. JANKOWIAK1, T. ŁODYGOWSKI2

The behaviour of concrete under quasi-static loadings for uniaxial compression, tension and plane
stress conditions is studied. The failure criteria of concrete are discussed as well as the methods
of constitutive parameters identification are elaborated. The attention is focus on an energetic
interpretation of selected failure criteria. The numerical example with concrete damage plasticity
material model is shown.
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1. I

Numerical methods are essential elements in design process of structure, particularly
for unique loadings. To predict real behaviour of a structure subjected to unique lo-
adings, the using of a failure criterion for concrete is required. The unique loadings
are destructive for whole structure (load capacity decreasing) or for parts of structure
(damage).

The proper description of concrete strength in an advance state of stress is cru-
cial for future computations. This strength should not be described basing only on
simple tests as tension, compression and shear [5, 15]. Typical concrete for which
compressive strength is fc, in the case of additional shear on the level of 0.08 fc, fails
with compressive strength equals only 0.5 fc. Therefore the concrete strength should be
described through taking into consideration mutual interaction of different components
of a stress state. In this paper, the presentation of quasi-static failure criteria for concrete
as a function of stress state for three-dimensional cases is included. In the past, several
failure criteria were presented [2, 5, 15, 17, 21] and some of them are also chosen and
discussed in this work. Additional, the interpretation in energetic spaces of the most
often used criteria is shown. In the case of a concrete in three-dimensional state of
stress, we observe a number of criteria, plastic flow criterion and initiation of cracking
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or strength criteria. During the final stage of deformation, together with the increasing
of deformations, the failure is detected.

In principle, the concrete failure is divided into two types. First it appears by
dominant tension and second by dominant compression [4]. Failure in tension is con-
nected with appearing of the crack and generally with decreasing of the capacity in
the direction perpendicular to the principal tension direction. In compression, it appro-
aches to initiation and evolution of number of micro-cracks. The crushing of concrete
is reached. It is connected with decreasing of the capacity of concrete.

2. P    - 

The compression test of a concrete in general predicts the quality of concrete and carries
the qualitative information on its internal micro-structure. The real tensile strength is
smaller than the theoretical one, what is computed based on molecular cohesion and
surface energy of the perfect homogenous body. This strength reaches [19] and mainly
depends on the cohesion of aggregates and hardened cement paste. Fig. 1 presents
the failure surfaces under the plane stress conditions for different classes of concretes
based on laboratory tests [16].

Fig. 1. Kupfer’s curves for different class of concrete.
Rys. 1. Krzywe Kupfera dla różnych klas betonu
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3. F 

The failure criteria for quasi-static loading cases can be expressed in the following
form:

(3.1) f (I1, J2, J3) = 0,

where I1 is first invariant of stress tensor σi j, J2 end J3 are the second and the third
invariant of stress deviator si j, respectively. The whole elastic energy density over the
volume material unit W can be divided into two parts [8]. The first W1 is connected
with the change of volume, while the second one W2 with the change of a shape
according to W = W1 + W2, where:

(3.2) W1 =
1 − 2v

6E
I2
1 ,

(3.3) W2 =
1 + v

E
J2.

E and v are Young modus and Poisson ratio. Invariants I1, J2 are directly connected
with the strain energy density of volume change W1 and with strain energy density of
distortion W2, respectively.

3.1. T B́ (B)   

The hypothesis assumes that failure is conducted by the strain energy density of distor-
tion as in Huber-Mises condition increased by a part of volume change strain energy
density [3]. Mathematical form of this assumption is expressed by the following equ-
ation:

(3.4) φ f + ηφv = K,

where

(3.5)
φ f = W2 =

1 + v
E

J2,

φv = W1 =
1 − 2v

6E
I2
1 ,

are the strain energies density of distortion and of volume change, respectively. The
last element is a function η, which is the matching function of the first invariant of
stress tensor and accordingly to the proposed by Burzyński form is:
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(3.6) η = η (W1) = ω +
δ

3p
= ω +

δ

I1
= ω +

δ

±
√

6E
1−2vW1

,

where hydrostatic pressure is:

(3.7) p =
I1
3

The Eq. (3.4) after taking into consideration dependences Eqs (3.5)-(3.6) has the form:

(3.8) W2 = K − ωW1 ∓ δ
√

1 − 2v
6E

W1.

The sign „+” is applied to the situation if I1 ≥ 0 and „–” if I1 < 0. Three constitutive
parameters ω, δ and K are identified by the three laboratory tests: uniaxial compression
(− fc, 0, 0) and tension ( ft , 0, 0) and biaxial uniform compression (− fbc,− fbc, 0). In
Tab. 1 are the all necessary data, which are required to the created system of equations:

(3.9)



1 + v
E

f 2
t

3
= K − ω1 − 2v

6E
f 2
t + δ

√(
1 − 2v

6E

)2
f 2
t

1 + v
E

f 2
c

3
= K − ω1 − 2v

6E
f 2
c − δ

√(
1 − 2v

6E

)2
f 2
c

1 + v
E

f 2
bc

3
= K − ω1 − 2v

6E
4 f 2

bc − δ
√(

1 − 2v
6E

)2
4 f 2

bc

.

By the solution of the system Eq. (3.9) we drive of three necessary parameters of
failure surface. The fourth and the fifth columns in Tab. 1 are collected to construct
the system of equation based on Eq. (3.8).

The solution of the system of Eq. (3.9) gives three constitutive parameters in the
form:

(3.10)



ω = −1
3

a
(
− f 2

bc − 2 ft fbc + ft fc + 2 fc fbc

)

b
(
−4 f 2

bc + 2 fc fbc − 2 ft fbc + ft fc
)

δ = − a f 2
bc ( fc − ft)

b
(
−4 f 2

bc + 2 fc fbc − 2 ft fbc + ft fc
)

K =
a fc ft f 2

bc

−4 f 2
bc + 2 fc fbc − 2 ft fbc + ft fc

,
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Table 1
Data for identification of Burzyński criterion.
Dane do identyfikacji kryterium Burzyńskiego

Point I1 J2 W1 W2

(σ1, σ2, σ3) = ( ft , 0, 0) ft
f 2
t

3
1 − 2v

6E
f 2
t

1 + v
E

f 2
t

3

(σ1, σ2, σ3) = (− fc, 0, 0) − fc
f 2
c

3
1 − 2v

6E
f 2
c

1 + v
E

f 2
c

3

(σ1, σ2, σ3) = (− fbc,− fbc, 0) −2 fbc
f 2
bc

3
1 − 2v

6E
4 f 2

bc
1 + v

E
f 2
bc

3

where

(3.11) a =
1 + v

E
, b

1 − 2v
6E

.

For example assuming that fc = 30MPa, ft = 3MPa and fbc = 33.6MPa, the
three constitutive parameters are obtained as ω = 1.1878, δ = 140.069,K = 0.001556.

The Burzyński energetic failure criterion [3, 20] in graphical form is presented in
Fig. 2 (black continuous line). There are two visible lines, which considers invariant I1
for opposite signs. The curve in Burzyński criterion passes through identification points
and the strain energy of distortion W2 from the specifed place (maximum) decreases
together with increase of the volume change strain energy W1. In addition, in Fig.
3 the shape of Burzyński failure surface under plane stress conditions is presented
(black continuous line). Fig. 4 shows the shape of failure surface in meridian plane.
The following function describes the shape in meridian plane:

(3.12) r =

√
2
a

(
K − 3bωξ2 −

√
3bδξ

)
.

It is important that Burzyński failure criterion reduces to other criteria. The po-
ssible cases are presented in original paper of Burzyński and discussed also later [12,
20].

3.2. O  

Failure criteria are specific limit functions of stresses, strains or the invariants of
stresses and strains. These functions can be used as the plastic potential functions or
the loading functions to describe the inelastic deformation of concrete. It is possible
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Fig. 2. Comparison of failure curves in space W1 −W2.
Rys. 2. Porównanie krzywych zniszczenia w przestrzeni W1 −W2

Fig. 3. Different failure criteria in plane stress conditions σ1 − σ2.
Rys. 3. Kryteria zniszczenia w płaskim stanie naprężenia σ1 − σ2



Q-     129

Fig. 4. Different failure criteria in meridian plane.
Rys. 4. Różne kryteria zniszczenia w przekroju południkowym

to describe the criterion of the material effort in energetic form [3]. Below we present
some representative criteria that depend on various number of parameters.

3.2.1. The Huber-Mises-Hencky (HMH) failure criterion

The criterion assumes that the strain energy of distortion (energy of deviatoric
state) is only responsible for failure of material [26]. It is expressed in the following
form:

(3.13) f (J2) = J2 − k2 = 0.

It assumes only one constitutive parameter k, which can be computed form the
compressive strength of concrete fc:

(3.14) k =
fc√
3
.

Taking into account the equations 2-3, the strain energy of distortion, which decides
on the material failure, is as following:

(3.15) W2 =
(1 + v)

E
f 2
c

3
= 0.012MJ/m3.

In the space defined by the strain energy of distortion W2 and the volume change
of strain energy W1, this criterion for the data: compressive strength fc = 30MPa,
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Young modulus E = 30e3MPa and Poisson ratio v = 0.2 is presented in Fig. 2 as red
line (parallel to W1 axis). Additionally, the shapes of this condition in plane stress case
and in meridian plane are shown in Figs 3 and 4 as red lines.

3.2.2. The Drucker-Prager (DP) failure criterion

The criterion takes into consideration additionally the influence of the first in-
variants of stress state I1 and the volume change strain energy density [6, 23]. The
criterion is written in the form:

(3.16) f (I1, J2) = mI1 +
√

J2 − k = 0.

To identify the two constitutive parameters m and k, the using of the two points
( ft , 0) and (− fc, 0) is necessary. It is required that the failure surface passes through
both points. This condition is satisfied for the pair of numbers (m, k) in the form:

(3.17)



m =
( fc − ft)√
3 ( fc + ft)

k =
2 fc ft√

3 ( fc + ft)

.

Assuming fc = 30MPa and ft = 3MPa, we obtain two parameters m = 0.47 and
k = 3.15. The strain energy of distortion which decides on the failure in DP criterion is
dependent on the volume change strain energy according to the following expression:

(3.18) W2 =



1 + v
E

k2 + 2mk
1 + v

E

√
6E

1 − 2v
W1 + 6m2 1 + v

1 − 2v
W1 I1 < 0

1 + v
E

k2 − 2mk
1 + v

E

√
6E

1 − 2v
W1 + 6m2 1 + v

1 − 2v
W1 I1 ≥ 0

.

In Figs 2-4, the failure criterion in space W2 −W1, in plane stress conditions and
in meridian plane, for fc = 30MPa, ft = 3MPa, E = 30e3MPa, and v = 0.2 are shown
by orange line.

3.2.3. The Bresler-Pister (BP) failure criterion

The BP criterion describes the strength in advance state of stress and takes into
account both the strain energy of distortion and the volume change strain energy density
[2]. It is presented in the following form:

(3.19) f (I1, J2) = A + BI1 + C (I1)2 −
√

J2 = 0.
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This criterion is depends on 3 independent parameters. For identification of these
constitutive parameters A, B and C, it is necessary to use three points defined by
experimental tests, there are ( ft , 0), (− fc, 0) and (− fbc,− fbc), where fbc is the strength
of concrete for biaxial uniform compression. The criterion passes thought three iden-
tification points and defines the three parameters (A, B,C) in the form:

(3.20)



A =
( fc ft fbc) ( ft + 3 fc + 8 fbc)√

3 ( fc + ft) (2 fbc − fc) (2 fbc + ft)

B =
( fc − ft)

(
fbc fc + fbc ft − ft fc − 4 f 2

bc

)
√

3 ( fc + ft) (2 fbc − fc) (2 fbc + ft)

C =
(3 fbc ft − fbc fc − 2 ft fc)√

3 ( fc + ft) (2 fbc − fc) (2 fbc + ft)

.

Assuming fc = 30MPa, ft = 3MPa and fbc = 33.6MPa, the three constitutive
parameters are of values A = 3.6832, B = −0.6326 and C = −0.0059. The strain
energy of distortion as a function of the volume change strain energy is presented by
the equation:

(3.21) W2 =



a


A2 − 2AB

√
bW1 − 2ACbW1+

2BC
√

(bW1)3 + B2bW1 + C2 (bW1)2

 I1 < 0

a


A2 + 2AB

√
bW1 + 2ACbW1+

2BC
√

(bW1)3 + B2bW1 + C2 (bW1)2

 I1 ≥ 0

,

where:

(3.22) a =
1 + v

E
, b =

6E
1 − 2v

.

In Figs 2-4 we have presented the curves of the Bresler-Pister failure criterion in
space W2 − W1, in plane stress conditions and in meridian plane by green lines for
comparison with earlier failure criteria.

3.2.4. The Mróz (M) failure criterion

The three parameters failure criterion with ellipse shape in meridian plane was
introduced by Mróz [15] in the form:

(3.23) f (I1, J2) = (I1 − A)2 + BJ2 −C = 0.
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The same identification points like in the cases of the Burzyński and the Bresler-Pister
failure criteria were used to identify three constitutive parameters A, B and C. The
conditions are satisfied for the following three numbers (A, B,C):

(3.24)



A =
3
2

( fc − ft) f 2
bc

Ω

B = −33 f 2
bc + Ω

Ω

C =
Ω

[
4Ω ft − 12 ft f 2

bc ( fc − 2 ft) − 4Ω f 2
t

]
+ 9 ( fc − ft)2 f 4

bc

4Ω2

,

where:

(3.25) Ω = ( fbc − fc)( fbc − ft) − ( fc − ft) fbc.

Assuming as before fc = 30MPa, ft = 3MPa and fbc = 33.6MPa, the three
constitutive parameters are A = −58.96, B = 10.10 and C = 3863.82. The strain
energy of distortion as a function of the volume change strain energy is presented by
the equation:

(3.26) W2 =



a
B

[
C −

( √
bW1 − A

)2]
I1 ≥ 0

a
B

[
C −

(
−

√
bW1 − A

)2]
I1 < 0

where:

(3.27) a =
1 + v

E
, b =

6E
1 − 2v

.

The Mróz failure criterion in space W2 − W1, in plane stress conditions and in
meridian plane is presented in Figs 2-4 by black continuous lines. The M criterion is
identical with the Burzyński failure criterion for the same identification points so in
the future will be called the Burzyński-Mróz failure criterion.

3.2.5. The Willam-Warnke (WW) failure criterion

The criterion introduced for concrete by Willam-Warnke [28] in three dimensional
stress state is proposed in the form:

(3.28) f (I1, J2, J3) =
1
3z

I1
fc

+

√
2
5

1
r (θ)

√
J2

fc
− 1,
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where:

(3.29) r (θ) =
2rc

(
r2
c − r2

t

)
cos θ + rc (2rt − rc)

√
4
(
r2
c − r2

t

)
cos2 θ + 5r2

t − 4rcrt

4
(
r2
c − r2

t

)
cos2 θ + (rc − 2rt)2

,

for:

(3.30)

θ =
1
3

cos−1


3
√

3
2

J3

2

√
J3
2

 ,

cos θ =
2σ1 − σ2 − σ3√

2
[
(σ1 − σ2)2 + (σ2 − σ3)2 + (σ1 − σ3)2

] .

The identification of the three parameters rc, rt and z can be performed based on
the same points as before. The values of invariants I1, J2 and θ, which correspond to
the three identification points ( ft , 0, 0), (− fc, 0, 0) and (− fbc,− fbc, 0), are collected in
Tab. 2.

Table 2
Data for identification of Willam-Warnke criterion parameters.

Dane do identyfikacji parametrów kryterium Willama-Warnkego

Point I1 J2 θ r(θ)

(σ1, σ2, σ3) = ( ft , 0, 0) ft
f 2
t

3
00 rt

(σ1, σ2, σ3) = (− fc, 0, 0) − fc
f 2
c

3
600 rc

(σ1, σ2, σ3) = (− fbc,− fbc, 0) −2 fbc
f 2
bc

3
00 rt

The three parameters are found in the form:

(3.31)



rt =

√
6
5

[
fbc ft

fc (2 fbc + ft)

]

rc =

√
6
5

[
fbc ft

3 fbc ft + fc ( fbc − ft)

]

z =
fbc ft

fc ( fbc − ft)

,
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The failure surface passes thought the three identification points. Assuming
fc = 30MPa, ft = 3MPa and fbc = 33.6MPa, the three parameters have the values
rt = 0.0524316, rc = 0.090479 and z = 0.1098039. The strain energy density of distor-
tion as a function of the volume change strain energy density for the Willam-Warnke
failure criterion is presented by equation:

(3.32) W2 =



a
[
5
2

f 2
c r2 (θ) − 5

3
fcr2 (θ)

z

√
bW1 +

5
18

r2 (θ)
z2

]
I1 ≥ 0

a
[
5
2

f 2
c r2 (θ) +

5
3

fcr2 (θ)
z

√
bW1 +

5
18

r2 (θ)
z2

]
I1 < 0

,

where:

(3.33) a =
1 + v

E
and b =

6E
1 − 2v

.

In Figs 2-4 the curves of the Willam-Warnke failure criterion is presented by black
dotted lines (in space W2 −W1, in plane stress conditions and in meridian plane). In
that case, in the deviatoric plane is curve assembled from the parts of ellipse and it
is necessary to use in Eq. (3.32) proper value of r(θ), as in Tab. 2. According to Eq.
(3.29) r(θ), is changing from rt to rc.

3.2.6. The Podgórski (P) failure criterion

There are exist many others criteria, which have more parameters. The last one
failure criterion which we decided to discuss has five parameters and was proposed
for advanced state of stress by Podgórski [22] in the form:

(3.34) f (I1, J2, J3) =
1
3
I1 − A + BP (J)

√
2
3
J2 +

2
3
CJ2 = 0,

where:

(3.35) P (J) = cos
(
1
3

cos−1 DJ − E
)
,

while:

(3.36) J = cos (3θ) =
3
√

3
2

J3

J3/2
2

.
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Table 3
Data for identification of Podgórski failure criterion parameters.

Dane do identyfikacji parametrów kryterium Podgórskiego

Points I1 J2 J P(J)

(σ1, σ2, σ3) = ( ft , 0, 0) ft
f 2
t

3
1 cos

(
1
3

cos−1 D − E
)

(σ1, σ2, σ3) = (− fc, 0, 0) − fc
f 2
c

3
−1 cos

(
1
3

cos−1 −D − E
)

(σ1, σ2, σ3) = (− fbc,− fbc, 0) −2 fbc
f 2
bc

3
1 cos

(
1
3

cos−1 D − E
)

(σ1, σ2, σ3) = (− fcc,−1/2 fcc, 0) −3
2

fcc
1
4

f 2
cc 0 cos

(
1
3

cos−1 0 − E
)

(σ1, σ2, σ3) = ( ftt , ftt , ftt) 3 ftt 0 – –

The identification of five parameters A, B,C,D and E is performed based on five
identification points ( ft , 0, 0), (− fc, 0, 0), (− fbc,− fbc, 0), (− fcc,−1/2 fcc, 0) and ( ftt , ftt , ftt).
The values of invariants for those points are collected in Tab. 3.

The system of equations, which should be solved to compute material parameters,
is as follows:

(3.37)



1
3

ft − A + B cos
(
1
3

cos−1 D − E
) √

2
3

ft +
2
3
C

f 2
t

3
= 0

−1
3

fc − A + B cos bc
(
1
3

cos−1 −D − E
) √

2
3

fc +
2
3
C

f 2
c

3
= 0

−2
3

fbc − A + B cos
(
1
3

cos−1 D − E
) √

2
3

fbc +
2
3
C

f 2
bc

3
= 0

−1
2

fcc − A + B cos
(
1
3

cos−1 0 − E
)

1√
6

fcc +
2
3
C

f 2
cc

4
= 0

ftt − A = 0

The above system of Eq. (3.37) is solved iteratively by Newton method. Assuming
data: fc = 30MPa, ft = 3MPa, fbc = 33.6MPa, fcc = 36MPa and ftt = 3MPa, the five
constitutive parameters A = 3, B = 1.4276,C = 0.0112,D = 1 and E = 0.03902 are
specified. The criterion has four identification points in plane stress conditions that are
why the shape in this plane (Fig. 3) is in good correlation with experimental data [16].

The strain energy of distortion which decides on the failure criterion is the follo-
wing function of the volume change strain energy:
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(3.38) W2 =


−BP (J)

√
2
3a +

√
∆

4
3Ca



2

,

where:

(3.39) a =
E

1 + v
and b =

6E
1 − 2v

.

While ∆ is:

(3.40) ∆ =



2
3
aB2P2 (J) − 4

(
2
3
Ca

) (
1
3

√
bW1 − A

)
I1 ≥ 0

2
3
aB2P2 (J) − 4

(
2
3
Ca

) (
−1

3

√
bW1 − A

)
I1 < 0

.

4. M    

The proper description of concrete failure is important, particularly if we think of
concrete behaviour in advanced states of deformations. In the concrete, because of the
evolution of existing micro-cracks, the softening appears. This effect, on the ground
of continuum mechanics is called damage. Specifically this problem appears in con-
crete during tension, while proceed the localization of deformation phenomena. From
the mathematical point of view, for quasi-static behavior the type of the system of
partial differential equations, which govern the process, is changed (from elliptical to
hyperbolic) and the problem looses the well-posedness. In consequence, the solution
is dependent on the discretization in pathological way [21]. This problem can be
regularized in different methods.

4.1. C   

The numerical analysis of initial boundary-value problem with localization of deforma-
tions needs a complex constitutive material modeling. In Concrete Damage Plasticity
model, two scalar variables are used to describe the damage of concrete, in tension
and in compression. Scalar damage was introduced firstly to creep modeling [14]
The fundamental problem in numerical analysis of concrete and reinforced concrete
structures is the description of the proper mechanism of failure and its load capacity.
The constitutive equation of concrete with scalar damage [14,17] is as follows:
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(4.1) σ = (1 − d) Del
0 :

(
ε − εpl

)
= Del :

(
ε − εpl

)
,

where σ is Cauchy stress tensor, d is a scalar variable of damage (connected with
the stiffness degradation), ε is a strain tensor, Del

0 is the tensor of the initial material
stiffness and Del = (1 − d)De

0l is degraded tensor of material stiffness. It is necessary
to define the effective stress measure based on Eq. (4.1):

(4.2) σ̄ = Del
0 :

(
ε − εpl

)
,

where εpl is tensor of plastic strain. The evolution of damage variable is defined by:

(4.3) d = d(σ̄, ε̄pl).

The scalar variable d is a function of effective stress σ̄ and equivalent plastic
strain ε̄pl. The tensor of initial material stiffness is isotropic and during deformation
is still isotropic but the elements of this tensor are multiplied by scalar (1 − d). The
damage of material in tension dt and in compression dc is defined independent through
two variables ε̄p

Cl and ε̄p
T l, which describe the equivalent strain in compression and in

tension. Their evolution is specified by:

(4.4)
ε̄pl =


ε̄

pl
S

ε̄
pl
R

 ,

˙̄εpl = h
(
σ̄, ε̄pl

)
ε̇pl.

The cracking (in tension) and crushing (in compression) are defined by increasing
of the hardening, softening, variables. These variables control the evolution of the
loading function and degradation of the material stiffness. The loading function as
a function of stress and effective plastic strain describes also the level of damage.
For inviscid plasticity with damage material model, the state of stress and strain must
satisfy the condition:

(4.5) F
(
σ, ε̄pl

)
≤ 0.

The plastic flow is defined by plastic flow potential function G(σ) and nonasso-
ciated flow rule in the form:

(4.6) ε̇pl = λ̇
∂G (σ)
∂σ

.
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The concrete damage plasticity model is the one of several possibilities. The proper
estimation of constitutive parameters from experimental results can guarantee qualita-
tive and quantitative quality of the constitutive model.

4.1.1. Loading function

The loading function [17] used in the model has the form:

(4.7) F (σ) =
1

1 − a

[ √
3J2 + αI1 + β 〈σmax〉 − γ 〈−σmax〉

]
− fc,

The parameters α, β and γ decide on the shape of the function in stress space. The
identification of these parameters is crucial. In the case of uniform biaxial compression
(− fbc,− fbc, 0) the terms with β and γ disappear in Eq. (4.7), because both 〈σmax〉
and 〈−σmax〉 are equal zero (while σmax = 0 and the Macauley bracket definition is
〈∗〉 = 1

2 (|∗| + ∗)). In this case the first invariant of stress tensor I1 is equal −2 fbc but
the second invariant of stress deviator J2 is equal ( f 2

bc)/3. Then the Eq. (4.7) takes the
shape:

(4.8)
1

1 − α



√
3

f 2
bc

3
− 2α fbc

 = fc,

and after conversion we arrived at the dependence:

(4.9) α =
( fbc/ fc) − 1

2 ( fbc/ fc) − 1
.

This dependence serves to determine the parameter α, based on ratio of two
strengths (biaxial compression fbc and uniaxial compression fc). The parameter β is
identified based on point ( ft , 0, 0). In this case 〈σmax〉 = 〈 ft〉 = ft and the Eq. (4.7) has
the form:

(4.10)
1

1 − α



√
3

f 2
t

3
+ α ft + β ft

 = fc,

because the first invariant of stress tensor I1 is equal ft and the second J2 is equal
( f 2

t )/3. In this case it is possible to compute β according to the dependence:

(4.11) β =
fc
ft

(1 − α) − (1 − α) .
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Fig. 5. Lubliner loading function in plane stress conditions.
Rys. 5. Funkcja obciążenia Lublinera w płaskim stanie naprężenia

In plane stress conditions only two parameters decide on the shape of the loading
function, that are α and β. The shape is presented in Fig. 5. If we substitute to equation
(4.7) invariants I1 and J2 correspond to point (− fc, 0, 0), this equation is satisfied
identity. The Lubliner loading function is presented in Fig. 5 in plane stress conditions.
The parameter γ appears only in three-axial state of stress if σmax < 0. Its influence
is visible in meridian plane. In view of the specific and different nature of the loading
function (4.7) in relation to the earlier presented criteria, in Fig. 6 the shape of the
criterion in meridian plane r−ξ is shown. The important are the results of experiments
(Launay & Gachon, 1971), which one marked by in Fig. 6. The two meridians: tensile
meridian TM (r < 0) and compressive meridian CM (r > 0) are presented in Fig. 6.
Important is the ratio of both radiuses r for a specific ξ:

(4.12) ρ =
rTM

rCM
for ξ

The definition of maximum principal stresses (Abbo & Sloan [1]) for both meri-
dians is necessary to construct the general equation of both meridians:

(4.13) σmax =



1
3

(
I1 + 2

√
3J2

)
for rTM

1
3

(
I1 + 2

√
3J2

)
for rCM
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Then the equation of both meridians is the following:

(4.14) rTM =



√
6

3
(1 − α) fc − (α + γ/3)

√
3ξ

1 + 2γ/3√
6

3
(1 − α) fc − (α + β/3)

√
3ξ

1 + 2β/3

for

r < − ξ√
2

¤
r ≥ − ξ√

2

,

(4.15) rCM =



√
6

3
(1 − α) fc − (α + γ/3)

√
3ξ

1 + γ/3√
6

3
(1 − α) fc − (α + β/3)

√
3ξ

1 + β/3

for

r < − 2ξ√
2

¤
r ≥ − 2ξ√

2

,

From the analysis of the Eq. (4.7) it appears, that thanks to use the Macauley
bracket, it is required to define the meridian equations independently in two zones:
compressive σmax < 0 and tensile σmax > 0. The corresponding straight lines are
printed in Fig. 6 by dashed lines. In addition, on the chart the identification points are
marked by . All three points lie on the meridians in the zone, where influence has
only parameters α and β, what validates the identification procedure. In the zone of
three-axial compression, where 〈−σmax〉 , 0, in the Eq. (4.12) is necessary to take into
account the proper value of r Eqs (4.14)-(4.15), what leads to the dependence:

(4.16) ρ =
γ + 3
2γ + 3

.

After transformation of the above formula, we can obtain:

(4.17) γ =
3 (1 − ρ)
2ρ − 1

.

Therefore the parameter γ is identified by the global fit into the experimental
data in three-axial compression zone. In Fig. 6 the experimental results are presented
[4]. These results give a parameter which varies between 0.64 and 0.8 depending on
research laboratory.

In accordance with the above-mentioned considerations, the evolution of F(σ)
depending on ε̄pl can be taken into account in Eq. (4.7). We decided to complete this
in the following way:

To make changeable the parameter β form the actual values of effective com-
pressive stress σ̄C and effective tensile stress σ̄T , which are the functions of ε̄pl

C and
ε̄

pl
T :
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(4.18) β =
σ̄S

(
ε̄

pl
S

)

σ̄R

(
ε̄

pl
R

) (1 − α) − (1 − α) ,

To replace the parameter fc by the function σ̄C

(
ε̄

pl
C

)
:

(4.19) fc = σ̄S

(
ε̄

pl
S

)
.

Fig. 6. Meridian plane of Lubliner loading function.
Rys. 6. Funkcja obciążenia Lublinera w przekroju południkowym

4.1.2. Plastic potential surface

The concrete damage plasticity model assumes the use of nonassociated flow rule.
Therefore this section discusses the method of identification of two parameters ψ, ε of
plastic potential function G. The Drucker-Prager hyperbolic function [1] in the form:
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(4.20) G (σ) =

√
( fc − ε ft tanψ)2 + q2 + p tanψ − fc = 0,

where p = 1
3 I1 is the effective hydrostatic pressure and q2 = 3J2 is HMH effective

stress. The two parameters ψ, ε occur in the above equation. Their influence on the
shape of the plastic potential function is shown in Fig. 7.

Fig. 7. Plastic potential function.
Rys. 7. Funkcja potencjału plastycznego

The two parameters ψ, ε are identified through global matching in plane p-q by
using the last square method [13].

Fig. 8. Uniaxial compression of concrete [26].
Rys. 8. Jednoosiowe ściskanie betonu [26]
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4.2. I    

The general idea of the concrete damage plasticity model was presented. The meaning
and interpretation of the parameter were also explained. The identification of para-
meters for concrete class B50 based on laboratory tests is now discussed in details.
The most important test which proves the class of concrete is uniaxial compression
test. The corresponding curve is presented in Fig. 8. The important is also test for
uniaxial tension, which gives the results presented in Fig. 9. In addition, to match the
parameters ψ, ε of the plastic flow potential function, the well known experimental
results (Swanson & Green [25]) are used (Fig. 10). These are the results of three-axial
compression (see Fig. 10), which are superposition of hydrostatic compression with
p = 0.0, 6.9, 13.8 MPa and additional compression in 3-3 direction up to failure.
The Kupfer curve (Fig. 1) is also necessary to describe the parameters of the loading
function.

Fig. 9. Uniaxial tension of concrete [26].
Rys. 9. Jednoosiowe rozciąganie betonu [26]

Fig. 10. Triaxial compression of concrete [25].
Rys. 10. Trójosiowe ściskanie betonu [25]
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One can assume that the concrete behaves linearly elastic in compression up to
0.6 fc and in tension to value ft . In the elastic zone, the Young modulus is E0 =

18.5GPa and the Poisson ratio is ν = 0.19. It is the result of quotients of the both
coordinates in point in Fig. 11 that is stress 30 MPa and strain 0.001622. This
point is the elastic limit and from that point to the stress 50 MPa, the concrete still
hardens. In this range possible unloading is along the line which is parallel to the
red segment with the slope equals to E0. To define the curve of hardening (softening)
in compression, it is necessary to use maximal number of point with coordinates are(
ε̄nl
C , σ̄C

)
, where ε̄nl

C is inelastic compressive strain, which is computed through the
subtracting from the total strain ε̄nl

C the elastic part ε̄el
C . When the stress reaches 50

MPa the concrete in compression starts to soften, what is connected with degradation
of its stiffness. The degradation of concrete stiffness is experimentally observed, what is
particularly visible during cyclic loading (Fig. 8) when the change of stiffness appears
after unloading. The decreasing of the model stiffness is connected with increasing
of the damage variable in compression. The method of describing the points

(
ε̄nl
C , σ̄C

)
bases on experimental curve is presented for one example point marked in Fig. 11 by
dot with numbers 1, 2, 3 and 4. The coordinates 1(ε̄C = 0.0055, σ̄C = 30) are read
directly from the chart in Fig. 11. The abscissa 0.0055 corresponds to point 2. It is
the total strain ε̄C . Based on 1 we compute inelastic strain ε̄nl

C , which is the abscissa
of the point 3. We assume that unloading runs parallel to initial value of E0. In
this case we use formula ε̄nl

C = ε̄C − σ̄C /E0. For this case the abscissa ε̄nl
C of the point

3 is equal 0.0039. Therefore, the identified point of material card has coordinates
(ε̄n

Cl = 0.0039, σ̄C = 30). The points which define the evolution of damage variable in
space ε̄nl

C , dC and degradation of stiffness are described in the following: the abscissa
ε̄nl
C is identical like earlier but damage variable dC is equal ( fc − σ̄C)/ fc. Based on the

information on the values σ̄C , dC and ε̄nl
C , the plastic strain ε̄pl

C (point 4) is computed
according to the following formula:

(4.21) ε̄
pl
C = ε̄nl

C −
dC

1 − dC

σ̄C

E0
.

The analogical consideration is also true in the case of tension. In the softening
zone there is an inelastic strain localization ε̄nl

T and in consequence of the plastic
strain localization ε̄nl

T , which is connected with degradation of stiffness. The stiffness
of concrete corresponding to degradation ε̄pl

T is equal (1−dT )E0. In the softening zone
additional constitutive parameter is GT , which according to the fracture mechanics,
describes the energy necessary to open unity crack [11] and the brittle behavior is
described not by the curve σ̄T − ε̄pl

T but by the curve σ̄T − ūpl
T . If the crack width is

equal the critical value ū(T − MAX)pl, the capacity of concrete decrease to zero.



Q-     145

Fig. 11. Stress-strain dependence for compression of concrete damage plasticity model.
Rys. 11. Zależność naprężenie-odkształcenie dla ściskania w modelu betonu plastycznego ze

zniszczeniem

Fig. 12. The stress-strain dependence for tension of concrete damage plasticity model.
Rys. 12. Zależność naprężenie-odkształcenie dla rozciągania w modelu betonu plastycznego ze

zniszczeniem
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After the cracking, the concrete carries residual stress according to energy of
cracking, which is the area under the curve σ̄T − ūpl

T . The absorbed energy by creating
of the unity crack is equal:

(4.22) GT =

ūpl
T−MAX∫

0

σ̄Tdūpl
T .

The function which describes the residual stress after initiation of cracking can
be defined in different ways (for example exponential function) but simple linear gives
also good results. The following data should be used to describe the linear elastic
material up to ft and then linear softening connected with stiffness degradation up to
ūpl

T−MAX (the Critical Cracking Displacement CCD):

Table 4
Tension softening.

Osłabienie w rozciąganiu

σ̄T ūpl
T

2.8 MPa 0

0 ūpl
T−MAX

Fig. 13. Linear softening in tension.
Rys. 13. Liniowe osłabienie w rozciąganiu

The maximal degradation of concrete is 0.99. The known are initial equivalent
plastic strain in tension in the moment t that is ε̄pl

(T−t) and d(T−t). The next increment of
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the equivalent plastic strain in tension ˙̄εpl
T based on unassociated flow role is computed.

The next stage is the computation of new equivalent plastic strain in tension:

(4.23) ε̄
pl
T−t+∆t = ε̄

pl
T−t + ˙̄εpl

T .

If the value ε̄pl
T−t+∆tl0 is greater than the critical value ūpl

T−MAX = ε̄
pl
(T−CRIT )l0, the

computation of damage variable is performed using the following equation:

(4.24) dT−t+∆t = dT−t + ˙̄upl
T /ūpl

T−MAX .

In addition, the evolution of loading function according to the evolution of equivalent
stress as a function of plastic strain is presented in Fig. 14. The regularization ensures
constant dissipation of energy during the cracking, because the strain energy density
is independent of the finite element size. The parameters that describe the behaviour
of concrete class B50 in compression and in tension are shown in Tab. 5 and 6.

Table 5
Relationship σ̄C − ε̄nl

C and dC − ε̄nl
C .

Zależność σ̄C − ε̄nl
C i dC − ε̄nl

C

σ̄C [MPa] ε̄nl
C dC ε̄nl

C

30.0 0.000099 0.0 0.000099

40.0 0.000154 0.0 0.000154

50.0 0.000762 0.0 0.000762

40.0 0.002558 0.2 0.002558

20.0 0.005675 0.6 0.005675

5.0 0.011733 0.9 0.011733

Table 6
Relationship σ̄T − ε̄nl

T and dT − ε̄nl
T .

Zależność σ̄T − ε̄nl
T i dT − ε̄nl

T

σ̄C [MPa] ε̄nl
C dC ε̄nl

C

2.800 0.0 0.0 0.0

0.028 0.0004 0.99 0.0004

Additional parameters are α and γ. They describe the shape of the loading surface
in the meridian plane and in plane stress conditions according to Figs 5-6 and presented
before equations. Based on the Kupfer curve which describes the ratio fbc/ fc as 1.12,
a parameter α is equal 0.0967742. The comparison of experimental data in meridian



148 T. J, T. Ł

Fig. 14. Evolution of loading function in plane stress conditions.
Rys. 14. Ewolucja funkcji obciążenia w płaskim stanie naprężenia

plane [5] with the shape of the loading function in Fig.6 gives the value of ρ equal
0.666. In this case the parameter which decides the shape of the loading function in
meridian plane γ is equal 3. The last stage is the identification of two parameters
ψ, ε , which describes the shape of plastic flow potential function in meridian plane.
The method of identification is the method of global matching. As a basis the well
known results of triaxial compression are used [25]. Based on the principal stresses
we describe the values of equivalent stresses p and q. In this plane the identification
of the parameters is performed based on the last square method, which minimalizes
the error in the following form:

(4.25) f =

4∑

t=1

(qi − q (pi, ψ, ε , fc, ft))2 → min .

The minimization leads to estimation of the parameters ψ, ε , which have the va-
lues 49◦ and 1.0, respectively. The shape of plastic potential function together with 4
identification points is shown in Fig. 15.

5. C  (       )

The asymmetric four points bending of a single notched concrete beam is an important
standard test to test and improve the concrete constitutive models. The failure of the
beam is caused by single nonsymmetrical crack, which is presented in Fig. 17. The
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Table 7
Identification points of plastic flow potential function.
Punkty identyfikujące funkcji potencjału plastycznego

No pi [MPa] qi [MPa] σ1 [MPa] σ2 [MPa] σ3 [MPa]

1 2.8 0 2.8 2.8 2.8

2 –16.6 50 0.0 0.0 –50

3 –28.9 66 –6.9 –6.9 –72.9

4 –44.1 91 –13.8 –13.8 –104.8

Fig. 15. Plastic flow potential function with identification points.
Rys. 15. Funkcja potencjału plastycznego wraz z punktami identyfikującymi

geometry of the considered concrete beam with boundary conditions is visible in
Fig. 16. All dimensions of the beam are specified in millimetres, and the width of
the beam is 100 mm. An important element of the test is proper application of single
parameter loading as specified in Fig. 16. In numerical simulation [9, 10] the loading
was enforced kinematically, like in experiment [24], in order to register the process
of damage evolution of the concrete sample. If the loading is transmitted through
a monotonically growing force and the critical force is reached, quasi-static process
became dynamic and the concrete sample collapses suddenly. As a result, this leads
to a sudden loss of static equilibrium and to absence of convergence of the classical
Newton-Rapson procedure.

In numerical model, similarly to real experiment, the displacement driven process
was enforced. The distance between the force and the central point of applying force to
the beam is ten times less than the distance between the force and left point of the force
applying. This causes that the loading is carried out exactly the same as in laboratory
experiment. The numerical calculations were performed for different sizes of the finite
element mesh (CPS4R – four nodes, linear interpolation and plane stress with reduced
integration finite element) and different constitutive parameters, particularly governed
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the softening process in tension (critical displacement). The characteristic lengths of
finite elements are 1, 2 and 5 mm in numerical calculations. For selected discretisation,
the influence of the basic numerical parameter, besides tensile strength equals 3.0 MPa
that is the critical cracking displacement (CCD)ūpl

(T−MAX) is discussed.

Fig. 16. Geometry and boundary conditions.
Rys. 16. Geometria i warunki brzegowe

Fig. 17. Failure pattern.
Rys. 17. Mechanizm zniszczenia

In Fig. 18 the relations force and crack mouth sliding displacement for different
values of CCD and for fixed element size 0.002 m are presented. It is visible that
CCD has the important influence on post-critical behaviour, after reaching the capacity
force. The smaller value of CCD corresponds to less cracking energy needed to open
the unit crack and more brittle global behaviour of the structure. The relative difference
in maximum achieved force is approximately 15% [(45 kN−39 kN)/39 kN·100%]. The
next computations were performed for different characteristic finite element lengths.
Fig. 19 presents two curves (red and blue) for two element sizes that are 0.001 m
and 0.002 m. The difference between the capacity forces for both cases is about 8%
[(39 kN−36 kN)/36 kN·100%]. An important conclusion is that presented solution is
acceptable, because it does not depend on FEM discretization in pathological way.
In addition, in Fig. 19 between the dashed lines the experimental results [24] are
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Fig. 18. Influence force- crack mouth sliding displacement for different value of CCD and the element
size 0.002m.

Rys. 18. Zależność siła – wzajemne pionowe przemieszczenie punktów w nacięciu dla różnych wartości
CCD i wielkości elementu skończonego 0.002m

Fig. 19. Comparison with experiment.
Rys. 19. Porównanie z eksperymentem

Fig. 20. Comparison of result for both discretisations (distribution of damaget variable).
Rys. 20. Porównanie wyników dla obu dyskretyzacji (rozkład zmiennej damaget)
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indicated. The distribution of damage parameter on the final stage of the failure process
for both characteristic element sizes is presented in Fig. 20. The displacements are five
times scaled and the failure patterns are in agreement with experiments (Fig. 17). Note
that in this case, the introduction of internal length scale (regularization) is by defining
a constant energy density, which is independent of the element size.

6. S

In the work the selected quasi-static failure criteria and methods of parameters identifi-
cation are presented. The closed formulae how to compute the constitutive parameters
of those criteria are shown. All failure criteria are presented in meridian plane and in
plane stress conditions to compare them. Energetic interpretation is also presented for
selected failure criteria according to Burzyński concept. The concrete damage plasticity
model is discussed together with parameters identification procedure and their inter-
pretation. The reliable numerical results for asymmetric four points bending notched
concrete beam are presented. Reliability of the results was confirmed by comparison
with the known laboratory tests.
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QUASI-STATYCZNE KRYTERIA ZNISZCZENIA BETONU

S t r e s z c z e n i e

W pracy prezentuje się zachowanie betonu przy obciążeniach quasi-statycznych przy jednoosiowym ści-
skaniu i rozciąganiu oraz w płaskim stanie naprężenia. Dyskutowane są kryteria zniszczenia betonu oraz
metody identyfikacji parametrów konstytutywnych. Istotnym elementem jest również energetyczna inter-
pretacja omawianych kryteriów. Zawarto przykład numeryczny wykorzystujący model materiału betonu
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plastycznego ze zniszczeniem, który dowodzi prawdziwości opisu konstytutywnego na podstawie wyników
eksperymentalnych.
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