Vol. 13
Latest Volume
All Volumes
2009-02-09
TEM Horn Antenna for Ultra-Wide Band Microwave Breast Imaging
By
Progress In Electromagnetics Research B, Vol. 13, 59-74, 2009
Abstract
A novel TEM horn antenna placed in a solid dielectric medium is proposed for microwave imaging of the breast. The major design requirement is that the antenna couples the microwave energy into the tissue without being immersed itself in a coupling medium. The antenna achieves this requirement by: 1) directing all radiated power through its front aperture,and 2) blocking external electromagnetic interference by a carefully designed enclosure consisting of copper sheets and power absorbing sheets. In the whole ultra-wide band the antenna features: 1) good impedance match, 2) uniform field distribution at the antenna aperture, and 3) good coupling efficiency.
Citation
Reza K. Amineh, Aastha Trehan, and Natalia K. Nikolova, "TEM Horn Antenna for Ultra-Wide Band Microwave Breast Imaging," Progress In Electromagnetics Research B, Vol. 13, 59-74, 2009.
doi:10.2528/PIERB08122213
References

1. Rubæk, T., P . M. Meaney, P . Meincke, and K. D. Paulsen, "Nonlinear microwave imaging for breast-cancer screening using Gauss-Newton's method and the CGLS inversion algorithm," IEEE Trans. Antennas and Propag., Vol. 55, No. 8, 2320-2331, August 2007.
doi:10.1109/TAP.2007.901993

2. Woten, D. A., J. Lusth, and M. El-Shenawee, "Interpreting artificial neural networks for microwave detection of breast cancer," IEEE Microwave Wirel. Components Lett., Vol. 17, No. 12, 825-827, December 2007.
doi:10.1109/LMWC.2007.910466

3. Davis, S. K., B. D. Van Veen, S. C. Hagness, and F. Kelcz, "Breast tumor characterization based on ultrawideband microwave backscatter," IEEE Trans. Biomed. Eng., Vol. 55, No. 1, 237-246, January 2008.
doi:10.1109/TBME.2007.900564

4. Zhang, H., S. Y. Tan, and H. S. Tan, "A novel method for microwave breast cancer detection," Progress In Electromagnetics Research, PIER 83, 413-434, 2008.

5. Fhager, A. and M. Persson, "Using a priori data to improve the reconstruction of small objects in microwave tomography," IEEE Trans. Microwav. Theory Tech., Vol. 55, No. 11, 2454-2462, November 2007.
doi:10.1109/TMTT.2007.908670

6. Yu, C., M. Yuan, J. Stang, E. Bresslour, R. T. George, G. A. Ybarra, W. T. Joines, and Q. H. Liu, "Active microwave imaging II: 3-D system prototype and image reconstruction from experimental data," IEEE Trans. Microwav. Theory Tech., Vol. 56, No. 4, 991-1000, April 2008.
doi:10.1109/TMTT.2008.919661

7. Klemm, M., I. J. Craddock, J. A. Leendertz, A. Preece, and R. Benjamin, "Improved delay-and-sum beamforming algorithm for breast cancer detection," Int. J. Antennas and Propag., Vol. 2008, Article ID 761402.

8. Chew, W. C and J. H. Lin, "A frequency-hopping approach for microwave imaging of large inhomogeneous bodies," IEEE Microw. Guided Wav. Lett., Vol. 5, No. 12, 439-441, ecem ber 1995.
doi:10.1109/75.481854

9. Jafari, H. M., M. J. Deen, S. Hranilovic, and N. K. Nikolova, "A study of ultrawideband antennas for near-field imaging," IEEE Trans. Antennas and Propag., Vol. 55, No. 4, 1184-1188, April 2007.
doi:10.1109/TAP.2007.893405

10. Jafari, H. M., J. M. Deen, S. Hranilovic, and N. K. Nikolova, "Copolarised and cross-polarised antenna arrays for breast,cancer detection," IET Microw. Antennas Propag., Vol. 1, No. 5, 1055-1058, October 2007.
doi:10.1049/iet-map:20060327

11. Woten, D. A. and M. El-Shenawee, "Broadband dual linear polarized antenna for statistical detection of breast cancer," IEEE Trans. Antennas and Propag., Vol. 56, No. 11, 3576-3580, November 2008.
doi:10.1109/TAP.2008.2005545

12., Nilavalan, R., I. J. Craddock, A. Preece, J. Leendertz, and R. Benjamin, "Wideband microstrip patch antenna design for breast cancer tumour detection ," IET Microw. Antennas Propag., Vol. 1, No. 2, 277-281, April 2007.

13. Kanj, H. and M. Popovic, "A Novel ultra-compact broadband antenna for microwave breast tumor detection," Progress In Electromagnetics Research, PIER 86, 169-198, 2008.

14. Li, X., S. C. Hagness, M. K. Choi, and D. Van Der Weide, "Numerical and experimental investigation of an ultra-wideband ridged pyramidal-horn antenna with curved launching plane for pulse radiation," IEEE Antennas Wirel. Propag. Lett., Vol. 2, 259-262, 2003.

15. Meaney, P. M., M. W. Fanning, T. Raynolds, C. J. Fox, Q. Fang, C. A. Kogel, S. P. Poplack, and K. D. Paulsen, "Initial clinical experience with microwave breast imaging in women with normal mammography," Acad Radiol., Vol. 14, No. 2, 207-218, February 2007.
doi:10.1016/j.acra.2006.10.016

16. Sill, J. M. and E. C. Fear, "Tissue sensing adaptive radar for breast cancer detection: Study of immersion liquids," Electron. Lett., Vol. 41, No. 3, 113-115, 2005.
doi:10.1049/el:20056953

17. Odendaal, J., J. Joubert, and M. J. Prinsloo, "Extended edge wave diffraction model for near-filed directivity calculations of horn antennas," IEEE Trans. Instrument. and Measur., Vol. 54, No. 6, 2469-2473, December 2005.
doi:10.1109/TIM.2005.858141

18. Chung, K., S. Pyun, and J. Choi, "Design of an ultrawide-band TEM horn antenna with a microstrip-type balun," IEEE Trans. Antennas and Propag., Vol. 53, No. 10, 3410-3413, October 2005.
doi:10.1109/TAP.2005.856396

19. Malherbe, J. A. G. and N. Barnes, "TEM horn antenna with an elliptic profile," Microw. Opt. Tech. Lett., Vol. 49, No. 7, 1548-1551, July 2007.
doi:10.1002/mop.22488

20. Lazebnik, M., L. McCartney, D. Popovic, C. B. Watkins, M. J. Lindstrom, J. Harter, S. Sewall, A. Magliocco, J. H. Booske, M. Okoniewski, and S. C. Hagne, "A large-scale study of the ultrawide band microwave dielectric properties of normal breast tissue obtained from reduction surgeries," Phys. Med. Biol., Vol. 52, 2637-2656, 2007.
doi:10.1088/0031-9155/52/10/001

21. Ansoft Corporation, USA, http://www.ansoft.com.