Photosynthetica 2019, 57(1):268-285 | DOI: 10.32615/ps.2019.027

Diurnal and seasonal variations in the photosynthetic performance and chlorophyll fluorescence of cassava 'Rayong 9' under irrigated and rainfed conditions

K. VONGCHAROEN1, S. SANTANOO2, P. BANTERNG3, S. JOGLOY3, N. VORASOOT3, P. THEERAKULPISUT1,2
1 Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
2 Salt-tolerant Rice Research Group, Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
3 Department of Plant Science and Agricultural Resources, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand

Diurnal photosynthesis responses of cassava cultivar Rayong 9 ('RY9') three months after planting, grown in a field conditions under irrigated and rainfed conditions, were evaluated during the rainy, cool, and hot seasons. Under the mild conditions of the rainy and cool seasons, net photosynthetic rates (PN) increased in parallel with light intensity and attained the maximum at 13.00 or 11.00 h. In the hot season, PN attained the prominent peak at 9.00 h, after which stomatal conductance decreased rapidly coordinated with declining PN and nonphotochemical quenching was enhanced. Photosynthetically active radiation was the major factor influencing PN in the rainy and cool seasons, whereas vapor pressure deficit was the major factor in the hot season. 'RY9' adapted extremely well in this climate because the maximal quantum yield of PSII photochemistry recovered fully in the evening even under the rainfed conditions in the hot season.

Additional key words: chlorophyll fluorescence; diurnal gas exchange; Manihot esculenta; nonphotochemical quenching; photosystem II.

Received: May 14, 2018; Accepted: August 16, 2018; Prepublished online: December 7, 2018; Published: January 30, 2019  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
VONGCHAROEN, K., SANTANOO, S., BANTERNG, P., JOGLOY, S., VORASOOT, N., & THEERAKULPISUT, P. (2019). Diurnal and seasonal variations in the photosynthetic performance and chlorophyll fluorescence of cassava 'Rayong 9' under irrigated and rainfed conditions. Photosynthetica57(1), 268-285. doi: 10.32615/ps.2019.027
Download citation

Supplementary files

Download file1950-Supplementary_information.docx

File size: 125.94 kB

References

  1. Alric J., Johnson X.: Alternative electron transport pathways in photosynthesis: a confluence of regulation. - Curr. Opin. Plant Biol. 37: 78-86, 2017. Go to original source...
  2. Alves A.A.C.: Cassava botany and physiology. - In: Hillocks R.J., Thresh J.M., Bellotti A.C. (ed.): Cassava: Biology, Production and Utilization. Pp. 67-90. CABI Publishing, New York 2002. Go to original source...
  3. Baker N.R.: Chlorophyll fluorescence: a probe of photosynthesis in vivo. - Annu. Rev. Plant Biol. 59: 89-113, 2008. Go to original source...
  4. Berg V.S., El-Sharkawy M.A., Hernandez A.D.P. et al.: Leaf orientation and water relations in cassava. - In: Annual Meeting of the American Society of Plant Physiologists. Pp. 186. Louisiana State University, Baton Rouge 1986.
  5. Bertamini M., Nedunchezhian N.: Leaf age effects on chlorophyll, Rubisco, photosynthetic electron transport activities and thylakoid membrane protein in field grown grapevine leaves. - J. Plant Physiol. 159: 799-803, 2002. Go to original source...
  6. Bertolli S.C., Souza G.M.: The level of environmental noise affects the physiological performance of Glycine max under water deficit. - Theor. Exp. Plant Physiol. 25: 36-45, 2013. Go to original source...
  7. Björkman O., Demmig B.: Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. - Planta 170: 489-504, 1987. Go to original source...
  8. Bolhar-Nordenkampf H.R., Long S.P., Baker N.R. et al.: Chlorophyll fluorescence as a probe of the photosynthetic competence of leaves in the field: A review of current instrumentation. - Func. Ecol. 3: 497-514, 1989. Go to original source...
  9. Bonal D., Bosc A., Ponton S. et al.: Impact of severe dry season on net ecosystem exchange in the Neotropical rainforest of French Guiana. - Glob. Change Biol. 14: 1917-1933, 2008. Go to original source...
  10. Calatayud P.A., Llovera E., Bois J.F. et al.: Photosynthesis in drought adapted cassava. - Photosynthetica 38: 97-104, 2000. Go to original source...
  11. Chaves M.M., Oliveira M.M.: Mechanisms underlying plant resilience to water deficit: prospects for water-saving agriculture. - J. Exp. Bot. 55: 2365-2384, 2004. Go to original source...
  12. Chazdon R.L. Pearcy R.W.: The importance of sunflecks for forest understory plants. - BioScience 41: 760-766, 1991. Go to original source...
  13. Chetty C.C., Rossin C.B., Gruissem W. et al.: Empowering biotechnology in southern Africa: establishment of a robust transformation platform for the production of transgenic industry-preferred cassava. - New Biotechnol. 30: 136-143, 2013. Go to original source...
  14. De Souza A.P., Massenburg L.N., Jaiswal D. et al.: Rooting for cassava: insights into photosynthesis and associated physiology as a route to improve yield potential. - New Phytol. 213: 50-65, 2017. Go to original source...
  15. De Tafur S.M., El-Sharkawy M.A., Calle F.: Photosynthesis and yield performance of cassava in seasonally dry and semiarid environments. - Photosynthetica 33: 249-257, 1997. Go to original source...
  16. Díaz-López L., Gimeno V., Simón I. et al.: Jatropha curcas seedlings show a water conservation strategy under drought conditions based on decreasing leaf growth and stomatal conductance. - Agr. Water Manage. 105: 48-56, 2012. Go to original source...
  17. Ding L., Wang K.J., Jiang G.M. et al.: Diurnal variation of gas exchange, chlorophyll fluorescence, and xanthophyll cycle components of maize hybrids released in different years. - Photosynthetica 44: 26-31, 2006. Go to original source...
  18. Duff G.A., Myers B., Williams R.J. et al.: Seasonal patterns in soil moisture, VPD, tree canopy cover and predawn potential in a northern Australian savanna. - Aust. J. Bot. 45: 211-224, 1997. Go to original source...
  19. Durako M.J.: Using PAM fluorometry for landscape-level assessment of Thalassia testudinum: can diurnal variation in photochemical efficiency be used as an ecoindicator of seagrass health? - Ecol. Ind. 18: 243-251, 2012. Go to original source...
  20. Eamus D., Cole S.: Diurnal and seasonal comparisons of assimilation, phyllode conductance and water potential of three Acacia and one Eucalypt species in the wet-dry tropics of Australia. -Aust. J. Bot. 42: 33-40, 1997. Go to original source...
  21. Edet M.A., Tijani-Eniola H., Lagoke S.T.O. et al.: Relationship of cassava growth parameters with yield, yield related components and harvest time in Ibadan, Southwestern Nigeria. - J. Nat. Sci. Res. 5: 87-92, 2015.
  22. Edwards G.E., Baker N.R.: Can CO2 assimilation in maize leaves be predicted accurately from chlorophyll fluorescence analysis? - Photosynth. Res. 37: 89-102, 1993. Go to original source...
  23. El-Sharkawy M.A., Cock J.H.: Photosynthesis of cassava (Manihot esculenta). - Exp. Agric. 26: 325-340, 1990. Go to original source...
  24. El-Sharkawy M.A., Cock J.H.: Water use efficiency of cassava. I. Effects of air humidity and water stress on stomatal conductance and gas exchange. - Crop Sci. 24: 497-502, 1984. Go to original source...
  25. El-Sharkawy M.A., De Tafur S.M., Cadavid L.F.: Potential photosynthesis of cassava as affected by growth conditions. - Crop Sci. 32: 1336-1342, 1992. Go to original source...
  26. El-Sharkawy M.A., De Tafur S.M., Lopez Y.: Eco-physiological research for breeding improved cassava cultivars in favorable and stressful environments in tropical/subtropical bio-systems. - Environ. Res. J. 6: 143-211, 2012.
  27. El-Sharkawy M.A., De Tafur S.M.: Genotypic and within canopy variation in leaf carbon isotope discrimination and its relation to short term leaf gas exchange characteristics in cassava grown under rainfed conditions in the tropics. - Photosynthetica 45: 515-526, 2007. Go to original source...
  28. El-Sharkawy M.A.: Cassava biology and physiology. - Plant Mol. Biol. 56: 481-501, 2004. Go to original source...
  29. El-Sharkawy M.A.: Effects of humidity and wind on leaf conductance of field grown cassava. - Rev. Bras. Fisiol. Veget. 2: 17-22, 1990.
  30. El-Sharkawy M.A.: International research on cassava photosynthesis, productivity, ecophysiology, and responses to environmental stresses in the tropics. - Photosynthetica 44: 481-512, 2006. Go to original source...
  31. El-Sharkawy M.A.: Physiological characteristics of cassava tolerance to prolonged drought in the tropics: Implications for breeding cultivars adapted to seasonally dry and semiarid environments. - Braz. J. Plant Physiol. 19: 257-286, 2007. Go to original source...
  32. El-Sharkawy M.A.: Prospects of photosynthetic research for increasing agricultural productivity, with emphasis on the tropical C4 Amaranthus and the cassava C3-C4 crops. - Photosynthetica 54: 161-184, 2016. Go to original source...
  33. El-Sharkawy M.A.: Stress tolerant cassava: The role of integrative eco-physiology breeding research in crop improvement. - Open J. Soil Sci. 2:162-186, 2012. Go to original source...
  34. FAO: Food Outlook Biannual Report on Global Food Markets: Cassava. Pp. 34-39. Food and Agriculture Organization of the United Nations, Rome 2017.
  35. Flexas J., Barón M., Bota J. et al.: Photosynthesis limitations during water stress acclimation and recovery in the drought-adapted Vitis hybrid Richer-110 (V. berlandieri x V. rupestris). - J. Exp. Bot. 60: 2361-2377, 2009. Go to original source...
  36. Fordyce I.R., Duff G.A., Eamus D.: The water relations of Allosyncarpia ternata at contrasting sites in the monsoonal tropics of northern Australia. - Aust. J. Bot. 45: 259-274, 1997. Go to original source...
  37. Freed R.D., Nissen O.: MSTAT-C Version 1.42. Michigan State University, East Lansing, Michigan 1992.
  38. Fryer M.J., Andrews J.R., Oxborough K. et al.: Relationship between CO2 assimilation, photosynthetic electron transport, and active O2 metabolism in leaves of maize in the field during periods of low temperature. - Plant Physiol. 116: 571-580, 1998. Go to original source...
  39. Genty B., Briantais J.M., Baker N.R.: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. - Biochim. Biophys. Acta. 990: 87-92, 1989. Go to original source...
  40. Geiger D.R., Servaites J.C.: Diurnal regulation of photosynthetic carbon metabolism in C3 plants. - Annu. Rev. Plant Phys. 45: 235-256, 1994. Go to original source...
  41. Gomez K.A., Gomez A.A.: Statistical Procedures for Agricultural Research. Pp. 1-628. John Wiley & Sons, New York 1984.
  42. Gorbe E., Calatayud A.: Applications of chlorophyll fluorescence imaging technique in horticultural research: a review. - Sci. Hortic.-Amsterdam 138: 24-35, 2012. Go to original source...
  43. Hasler N., Avissar R.: What controls evapotranspiration in the Amazon basin? - J. Hydrometeorol. 8: 380-395, 2007. Go to original source...
  44. Hazrati S., Tahmasebi-Sarvestani Z., Modarres-Sanavy S.A.M. et al.: Effects of water stress and light intensity on chlorophyll fluorescence parameters and pigments of Aloe vera L. - Plant Physiol. Bioch. 106: 141-148, 2016. Go to original source...
  45. Hikosaka K.: Leaf canopy as a dynamic system: ecophysiology and optimality in leaf turnover. - Ann. Bot.-London 95: 521-533, 2005. Go to original source...
  46. Hirasawa T., Hsiao T.C.: Some characteristics of reduced leaf photosynthesis at midday in maize growing in the field. - Field Crop. Res. 62: 53-62, 1999. Go to original source...
  47. Huang L.F., Zheng J.H., Zhang Y.Y. et al.: Diurnal variations in gas exchange, chlorophyll fluorescence quenching and light allocation in soybean leaves: The cause for midday depression in CO2 assimilation. - Sci Hortic.-Amsterdam 110: 214-218, 2006. Go to original source...
  48. Huner N.P.A, Öquist G., Sarhan F.: Energy balance and acclimation to light and cold. - Trends Plant Sci. 3: 224-230, 1998. Go to original source...
  49. IPCC: The climate system: an overview. - In: Houghton J.T., Ding Y., Griggs D.J. et al. (ed.): Climate Change 2001: The Scientific Basis. Contribution of Working Group I in the Third Assessment Report of Intergovernmental Panel on Climate Change. Pp. 85-98. Cambridge University Press, Cambridge 2001.
  50. Kalaji H.M., Schansker G., Ladle R.J. et al.: Frequently asked questions about in vivo chlorophyll fluorescence: practical issues. - Photosynth. Res. 122: 121-158, 2014. Go to original source...
  51. Keeratikasikorn P.: Soil of Northeast Thailand. Pp. 81-95. Faculty of Agriculture, Khon Kaen University. Khon Kaen 1991.
  52. Kitajima K., Mulkey S.S., Wright J.: Variation in crown light utilization characteristics among tropical canopy trees. - Ann. Bot. 95: 535-547, 2005. Go to original source...
  53. Koyama K., Takemoto S.: Morning reduction of photosynthetic capacity before midday depression. - Sci. Rep. 4: 4389, 2014. Go to original source...
  54. Lahai T., Ekamayake I.J., Koroma J.P.C.: Influence of canopy structure on yield of cassava cultivars at various consequences of an inland valley agro-ecosystem. - J. Agric. Biotech. Sustain. Dev. 5: 36-47, 2013. Go to original source...
  55. Lancaster P.A., Brooks J.E.: Cassava leaves as human food. - Econ. Bot. 37: 331-348, 1983. Go to original source...
  56. Latif S., Müller J.: Potential of cassava leaves in human nutrition: a review. - Trends Food Sci. Technol. 44: 147-158, 2015. Go to original source...
  57. Li H., Zhang G.C., Xie H.C. et al.: The effects of the phenol concentrations on photosynthetic parameters of Salix babylonica L. - Photosynthetica 53: 430-435, 2015. Go to original source...
  58. Li X.W., Chen S.L.: Diurnal changes in gas exchange and chlorophyll fluorescence parameters of Fritillaria cirrhosa and F. Delavayi under field conditions. - Photosynthetica 47: 191-198, 2009. Go to original source...
  59. Logan B.A., Adams III W.W., Demmig-Adams B.: Avoiding common pitfalls of chlorophyll fluorescence analysis under field conditions. - Funct. Plant Biol. 34: 853-859, 2007. Go to original source...
  60. Lukuyu B., Okike I., Duncan A. et al.: Use of Cassava in Livestock and Aquaculture Feeding Programs. ILRI Discussion Paper 25. Pp. 83. International Livestock Research Institute, Nairobi 2014.
  61. Makino A., Mae T., Ohira K.: Photosynthesis and ribulose 1,5- bisphosphate carboxylase in rice leaves. Changes in photosynthesis and enzymes involved in carbon assimilation from leaf development through senescence. - Plant Physiol. 73: 1002-1007, 1983. Go to original source...
  62. Maxwell K., Johnson G.N.: Chlorophyll fluorescence - a practical guide. - J. Exp. Bot. 51: 659-668, 2000. Go to original source...
  63. McAdam S.A.M., Brodribb T.J.: The evolution of mechanisms driving the stomatal response to vapor pressure deficit. - Plant Physiol. 167: 833-843, 2015. Go to original source...
  64. Merilo E., Yarmolinsky D., Jalakas P. et al.: Stomatal VPD Response: There is more to the story than ABA. - Plant Physiol. 176: 851-864, 2018. Go to original source...
  65. Müller P., Li X.-P., Niyogi K.K.: Non-photochemical quenching: a response to excess light energy. - Plant Physiol. 125: 1558-1566, 2001. Go to original source...
  66. Murchie E.H., Lawson T.: Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications. - J. Exp. Bot. 64: 3983-3998, 2013. Go to original source...
  67. Murchie E.H., Pinto M., Horton P.: Agriculture and the new challenges for photosynthesis research. - New Phytol. 181: 532-552, 2008. Go to original source...
  68. Myers B., Duff G.A., Eamus D. et al.: Seasonal variations in water relations of trees of differing phenology in a wet-dry tropical savanna near Darwin, NT. - Aust. J. Bot. 45: 225-240, 1997. Go to original source...
  69. Nassar N., Ortiz R.: Breeding cassava. - Sci. Am. 302: 78-84, 2010. Go to original source...
  70. Office of Agricultural Economics: Cassava: planted area, harvested area and yield in 2016. Dryad digital repository. http://www.oae.go.th/assets/portals/1/files/production/cassava_dit.pdf, 2018.
  71. Okogbenin E., Setter T.L., Ferguson M. et al.: Phenotypic approaches to drought in cassava: review. - Front. Physiol. 4: 1-15, 2013. Go to original source...
  72. Okogbenin E., Setter T.L., Ferguson M. et al.: Phenotyping cassava for adaptation to drought. - In: Monneveux P., Ribaut J.-M. (ed.): Drought Phenotyping in Crops: from Theory to Practice. Pp. 381-400. CIMMYT/Generation Challenge Programme, Mexico City 2010.
  73. Oliveira E. C., Miglioranza E.: Stomatal density in six genotypes of cassava. - Int. J. Eng. Sci. Inov. Technol. 3: 305-308, 2014.
  74. Parry M.A.J., Reynolds M., Salvucci M.E. et al.: Raising yield potential of wheat. II. Increasing photosynthetic capacity and efficiency. - J. Exp. Bot. 62: 453-467, 2011. Go to original source...
  75. Pearcy R.W.: Sunflecks and photosynthesis in plant canopies. - Annu. Rev. Plant Phys. 41: 421-453, 1990. Go to original source...
  76. Pearcy R.W., Way D.A.: Two decades of sunfleck research: looking back to move forward. - Tree Physiol. 32: 1059-1061, 2012. Go to original source...
  77. Peltier G., Tolleter D., Billon E. et al.: Auxiliary electron transport pathways in chloroplasts of microalgae. - Photosynth. Res. 106: 19-31, 2010. Go to original source...
  78. Prior L., Eamus D., Duff G.A.: Seasonal and diurnal patterns of carbon assimilation, stomatal conductance, leaf water potential of Eucalyptus tetrodontasaplings in a wet-dry savanna in Northern Australia. - Aust. J. Bot. 45:241-258, 1997a. Go to original source...
  79. Prior L., Eamus D., Duff G.A.: Seasonal trends in carbon assimilation, stomatal conductance, predawn leaf water potential and growth of Terminalia ferdinandiana, a deciduous tree of northern Australia. - Aust. J. Bot. 45: 53-69, 1997b. Go to original source...
  80. Ravindra V.: Cassava leaves as animal feed: potential and limitations. - J. Sci. Food Agric. 61: 141-150, 1993. Go to original source...
  81. Renninger H. J., Phillips N., Salvucci G.D.: Wet vs. dry season transpiration in an Amazonian rain forest palm Iriartea deltoidea. - Biotropica 42: 470-478, 2010. Go to original source...
  82. Rosenqvist E., van Kooten O.: Chlorophyll fluorescence: a general description and nomenclature. - In: DeEll, J.R., Toivonen P.M.A. (ed.): Practical Applications of Chlorophyll Fluorescence in Plant Biology. Pp. 31-77. Kluwer Academic Publ, Dordrecht - Boston - London 2003. Go to original source...
  83. Rosenthal D.M., Slattery R.A., Miller R.E. et al.: Cassava about-FACE: greater than expected yield stimulation of cassava (Manihot esculenta) by future CO2 levels. - Glob. Change Biol. 18: 2661-2675, 2012. Go to original source...
  84. Saibo N.J.M., Lourenço T., Oliveira M.M.: Transcription factors and regulation of photosynthetic and related metabolism under environmental stresses. - Ann. Bot.-London 103: 609-623, 2009. Go to original source...
  85. Sanoh Y., Ishimaru T., Ohsumi A. et al.: Effects of soil temperature on growth and root function in rice. - Plant Prod. Sci. 13: 235-242, 2010. Go to original source...
  86. Sapeta H., Costa J.M, Lourenço T. et al.: Drought stress response in Jatropha curcas: growth and physiology. - Environ. Exp. Bot. 85: 76-84, 2013. Go to original source...
  87. Sausen T.L., Rosa L.M.G.: Growth and carbon assimilation limitations in Ricinus communis (Euphorbiaceae) under soil water stress conditions. - Acta Bot. Bras. 24: 648-654, 2010. Go to original source...
  88. Shirke P.A., Pathre U.V.: Diurnal and seasonal changes in photosynthesis and photosystem 2 photochemical efficiency in Prosopis juliflora leaves subjected to natural environmental stress. - Photosynthetica 41: 83-89, 2003. Go to original source...
  89. Song Y., Chen Q., Ci D. et al.: Effects of high temperature on photosynthesis and related gene expression in poplar. - BMC Plant Biol. 14: 111, 2014. Go to original source...
  90. Suzuki Y., Miyamoto T., Yoshizawa R. et al.: Rubisco content and photosynthesis of leaves at different positions in transgenic rice with an over expression of RBCS. - Plant Cell Environ. 32: 417-427, 2009. Go to original source...
  91. Thai Meteorological Department: Season of Thailand. Dryad Digital Repository. https://www.tmd.go.th/info/ info.php?FileID=53, 2016.
  92. Turyagyenda L., Kizito E.B., Ferguson M. et al.: Physiological and molecular characterization of drought responses and identification of candidate tolerance genes in cassava. - AoB Plants 5: plt007, 2013. Go to original source...
  93. Vitolo H.F., De Souza G.M., Silveira J.A.G.: Cross-scale multivariate analysis of physiological responses to high temperature in two tropical crops with C3 and C4 metabolism. - Environ. Exp. Bot. 80: 54-62, 2012. Go to original source...
  94. Warren C.R., Adams M.A.: Distribution of N, Rubisco and photosynthesis in Pinus pinaster and acclimation to light. - Plant Cell Environ. 24: 597-609, 2001. Go to original source...
  95. Watson M.E., Brown J.R.: pH and lime requirement. - In: Brown J.R. (ed.): Recommended Chemical Soil Test Procedures for the North Central Region. North Central Regional Publ. 221 (revised). Publ. SB 1001. Pp. 13-16. Missouri Exp. Station, Columbia 1998.
  96. Wuenscher J.E., Kozlowski T.T.: Relationship of gas exchange resistance to tree-seedling ecology. - Ecology 52: 1016-1023, 1971. Go to original source...
  97. Yan W.M., Zhong Y., Shangguan Z.: A meta-analysis of leaf gas exchange and water status responses to drought. - Sci. Rep. 6: 20917: doi:10.1038/srep20917, 2016. Go to original source...
  98. Zha T.S., Wu Y.J., Jia X. et al.: Diurnal response of effective quantum yield of PSII photochemistry to irradiance as an indicator of photosynthetic acclimation to stressed environments revealed in a xerophytic species. - Ecol. Indic. 74: 191-197, 2017. Go to original source...