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1 Introduction

Rietz (1988), Barro (2006), and Gabaix (2012) have popularized the idea that low-

probability events with a large negative impact on consumption (“rare disasters”) can account

for many asset pricing puzzles, such as the equity premium puzzle of Mehra and Prescott

(1985).1 Barro (2006), in particular, argues that a rare disaster model calibrated to match

data from 35 countries can reproduce the observed high equity premium, the low risk-free

rate, and the stock market volatility. Barro assumed disaster probabilities of 1.7 percent a

year and declines in output/consumption in a range of 15 to 64 percent.

Many other researchers have followed Barro’s lead and formulated, calibrated/estimated,

and solved models with disaster probabilities and declines in consumption that are roughly

in agreement with Barro’s original proposal.2 Furthermore, the approach has been extended

to analyze business cycles (Gourio, 2012), credit risk (Gourio, 2013), and foreign exchange

markets (Farhi and Gabaix, 2008 and Gourio, Siemer, and Verdelhan, 2013). These calibra-

tions/estimations share a common feature: they induce large non-linearities in the solution.

This is not a surprise. The mechanism that makes rare disasters work is the large precau-

tionary behavior responses induced in normal times by the probability of tail events.

Dealing with these non-linearities is not too challenging when we work with endowment

economies. A judicious choice of functional forms and parameterization allow a researcher to

either derive closed-form solutions or formulae that can be easily evaluated.

The situation changes, however, when we move to production models, such as those of

Gourio (2012, 2013), Andreasen (2012), Isoré and Szczerbowicz (2013, 2015), and Petrosky-

Nadeau, Zhang, and Kuehn (2015). Suddenly, having an accurate solution is of foremost

importance. For example, rare disaster models have the promise of helping to design policies

to prevent disasters (with measures such as financial stability policy) and to mitigate them

once they have occurred (with measures such as bailouts and unconventional monetary pol-

icy). The considerable welfare losses associated with rare disasters reported by Barro (2009)

suggest that any progress along the lines of having accurate quantitative models to design

counter-disaster policies is a highly rewarding endeavor.

But we do not care only about accuracy. We also care about speed. Models that can

be useful for policy analysis usually require estimation of parameter values, which involves

the repeated solution of the model, and that the models be as rich in terms of detail as the

1See also Barro (2009), who, with the help of Epstein and Zin (1989) preferences, can fix some coun-
terfactual implications of models with power utility and high-risk aversion regarding the responses of the
price/dividend ratio to increases in uncertainty.

2Among many others, Barro and Ursúa (2012), Barro and Jin (2011), Nakamura, Steinsson, Barro, and
Ursúa (2013), Wachter (2013), and Tsai and Wachter (2015).
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most recent generation of dynamic stochastic general equilibrium (DSGE) models, which are

characterized by many state variables.

Gourio (2012, 2013) and Petrosky-Nadeau, Zhang, and Kuehn (2015) solve their models

with standard projection methods (Judd, 1992). Projection methods are highly accurate

(Aruoba, Fernández-Villaverde, and Rubio-Ramı́rez, 2006), but they suffer from an acute

curse of dimensionality. Thus, the previous papers concentrate in analyzing relatively small

models. Andreasen (2012) and Isoré and Szczerbowicz (2013, 2015) solve more fully-fledged

models with perturbation solutions. Perturbation solutions are fast to compute and can

handle many state variables. However, Isoré and Szczerbowicz (2013) only undertake first-

and second-order perturbations and Andreasen (2012) and Isoré and Szczerbowicz (2015) a

third-order perturbation. We will argue below that there are reasons to be cautious about

the properties of these perturbation solutions (see also Levintal, 2015). Perturbations are

inherently local solution methods and rare disasters often trigger equilibrium dynamics that

travel far away from the approximation point of the perturbation. Moreover, perturbations

may fail to approximate accurately asset prices and risk premia due to the strong volatility

embedded in these models.

To get around the limitations of existing algorithms, we apply a new solution method,

Taylor projection, to compute DSGE models with rare disasters. This method, recently

proposed by Levintal (2016), is a hybrid of Taylor-based perturbations and projections (and

hence its name). Like standard projection methods, Taylor projection starts from a residual

function created by plugging the unknown decision rules of the agents into the equilibrium

conditions of the model and searching for coefficients that make that residual function as

close to zero as possible. The novelty of the approach is that, instead of “projecting” the

residual function according to an inner product, we approximate the residual function around

the steady state of the model using a Taylor series, and find the solution that zeros the Taylor

series. We show that Taylor projection is sufficiently accurate and fast so as to open the door

to the solution and estimation of rich models with rare disasters, including New Keynesian

models such as those in Christiano, Eichenbaum, and Evans (2005) and Smets and Wouters

(2007).

To do so, we first propose in section 2 a standard New Keynesian model augmented with

Epstein-Zin preferences and time-varying rare disaster risk. We also present seven simpler

versions of the model. In what we will call version 1, we start with a benchmark real business

cycle model, also with Epstein-Zin preferences and time-varying rare disaster risk. This model

only has four state variables (capital, the classical technology shock, and two additional state

variables associated with the time-varying rare disaster risk). Then, we start adding more

shocks and price rigidities, until we get to version 8, our complete New Keynesian model with
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twelve state variables. Our layer-by-layer analysis allows us to gauge how accuracy and run

time change as new mechanisms are added to the model and as the dimensionality of the

state space grows.

In section 3, we calibrate the model with a baseline parameterization, which captures rare

disasters, and with a non-disaster parameterization, where we shut down rare disasters. The

latter calibration will help us in measuring the effect of disasters on the accuracy and speed

of our solution methods.

In section 4, we describe how we solve each of the eight versions of the model, with

the two calibrations, using perturbation, Taylor projection, and Smolyak collocation. We

implement different levels of each of the three solution methods: perturbations from order

1 to 5, Taylor projections from order 1 to 3, and Smolyak collocation from level 1 to 3.

Therefore, we generate eleven solutions per each of the eight versions of the model and each

of the two calibrations, for a total of 176 possible solutions (although we did not find a few

of the Smolyak solutions because of convergence/memory constraints).

In section 5, we present our main results. Our first finding is that first-, second-, and

third-order perturbations fail to provide a satisfactory accuracy. This is particularly true

for the risk-free interest rate and several impulse response functions. Our second finding

is that fifth-order perturbations are much more accurate, but they become cumbersome to

compute and require a non-trivial runtime and some skill at memory management. Our third

finding is that second- and third-order Taylor projections offer an outstanding compromise

between accuracy and speed. Second-order Taylor projections can be as accurate as Smolyak

collocations and, yet, be solved in a fraction of the time. Third-order Taylor projection takes

longer to run, but their accuracy can be quite high, even in testbed as challenging as the New

Keynesian model with rare disasters.3

We postulate, therefore, that a new generation of solution methods, such as Taylor pro-

jection (but also, potentially, others such as those in Maliar and Maliar, 2014) can be an

important tool in fulfilling the promises of production models with rare disasters. We are

ready now to start our analysis by moving into the description of the model.

2 A DSGE Model with Rare Disasters

We build a standard New Keynesian model along the lines of Christiano, Eichenbaum,

and Evans (2005) and Smets and Wouters (2007). In the model, there is a representative

3We provide MATLAB codes that implement the Taylor projection method for a general class of DSGE
models. Given these codes, the implementation of our method in larger, more complex models should be
relatively easy and straightforward.
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household that consumes and saves, a final good producer, a continuum of intermediate

good producers subject to Calvo pricing, and a monetary authority that sets up the nominal

interest rate following a Taylor rule. Given the goals of this paper and to avoid excessive

complexity in the model, we avoid wage rigidities.

As we described in the introduction, we augment the standard New Keynesian model

along two dimensions. First, we introduce Epstein-Zin preferences. Beyond being extremely

popular in macroeconomics and asset pricing, these preferences have been studied in the

context of New Keynesian models by Andreasen (2012), Rudebusch and Swanson (2012), and

Andreasen, Fernández-Villaverde, and Rubio-Ramı́rez (2013), among several others. Second,

we add a time-varying rare disaster risk. Rare disasters impose two permanent shocks on

the real economy: a productivity shock and a capital depreciation shock. When a disaster

occurs, technology and capital fall immediately. This specification should be viewed as a

reduced form that captures severe disruptions in production, such as those caused by a war

or a large natural catastrophe, and failures of firms and financial institutions, such as those

caused by massive labor unrest or a financial panic.

We present first the full New Keynesian model and some of its asset pricing implications.

Then, in subsection 2.7, we briefly describe the simpler versions of the model mentioned in

the introduction.

2.1 The household

A representative household’s preferences are representable by an Epstein-Zin aggregator

between the period utility Ut and the continuation utility Vt+1:

V 1−ψ
t = U1−ψ

t + βEt
(
V 1−γ
t+1

) 1−ψ
1−γ (1)

where the period utility over consumption ct and labor lt is given by Ut = eξtct (1− lt)ν and

Et is the conditional expectation operator. The parameter γ controls risk aversion (Swanson,

2012) and the intertemporal elasticity of substitution (IES) is given by 1/ψ̂, where ψ̂ =

1− (1 + ν) (1− ψ) (Gourio, 2012). The intertemporal preference shock ξt follows:

ξt = ρξξt−1 + σξεξ,t, εξ,t ∼ N (0, 1) .

The household’s budget constraint is given by:

ct + xt +
bt+1

pt
= wtlt + rtkt +Rt−1

bt
pt

+ Ft + Tt, (2)
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where xt is investment in physical capital, wt denotes the real wage, rt is the real rental price

of capital, Ft are the real profits of the firms in the economy, and Tt is a real lump-sum

transfer from the government. The household trades a nominal bond bt that pays a nominal

gross interest rate of Rt. We transform the nominal bond into real quantities by dividing by

the price pt of the final good. There is, as well, a full set of Arrow securities. With complete

markets and a zero net supply condition for those securities, we can omit them from the

budget constraint without further consequences.

Investment xt induces the law of motion for capital:

k∗t = (1− δ) kt + µt

(
1− S

[
xt
xt−1

])
xt (3)

where

log kt = log k∗t−1 − dtθt (4)

and

S

[
xt
xt−1

]
=
κ

2

(
xt
xt−1

− Λx

)2

.

Here, k∗t−1 is the capital decision taken by the household in period t − 1. Actual capital kt,

however, depends on the disaster shock. Define an indicator function dt that takes values 0

or 1. If a disaster occurs in t (i.e., dt = 1), kt falls by θt. Gourio (2012) interprets θt as the

permanent capital depreciation caused by the disaster.

We want, in addition, to capture the idea that the disaster risk can be time-varying. To

do so, we add an AR structure to the log of θt:

log θt = (1− ρθ) log θ̄ + ρθ log θt−1 + σθεθ,t, εθ,t ∼ N (0, 1)

which resembles those in models with stochastic volatility (Fernández-Villaverde, Guerrón-

Quintana, and Rubio-Ramı́rez, 2015; see also a similar specification in Gabaix, 2012). Note,

nevertheless, that dt is non-Gaussian, a fact that will have a material effect on the dynamics

of the model. We specify the evolution of θt in logs to ensure positive values of this variable.

The second term on the right-hand side of equation (3):

µt

(
1− S

[
xt
xt−1

])
xt

includes two parts: First, an investment-specific technological shock µt that follows:

log µt = log µt−1 + Λµ + σµεµ,t, εµ,t ∼ N (0, 1) .
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Second, a quadratic capital adjustment cost function that depends on investment growth

(Christiano, Eichenbaum, and Evans, 2005).

The household maximizes its preferences (1) subject to the budget constraint (2) and the

law of motion for capital (3). The optimality conditions for this problem are:

Et (Mt+1 exp (−dt+1θt+1) [rt+1 + qt+1 (1− δ)]) = qt (5)

1 = qtµt

[(
1− S

[
xt
xt−1

])
− S ′

[
xt
xt−1

]
xt
xt−1

]
+Et

(
Mt+1

[
qt+1µt+1S

′
[
xt+1

xt

](
xt+1

xt

)2
])

, (6)

ν
ct

1− lt
= wt, (7)

where λt is the Lagrange multiplier associated with the budget constraint, qt is the Lagrange

multiplier associated with the evolution law of capital (as a ratio of λt), and Mt+1 is the

stochastic discount factor:

Mt+1 = β
λt+1

λt

V ψ−γ
t+1

Et
(
V 1−γ
t+1

)ψ−γ
1−γ

.

A non-arbitrage condition also determines the nominal gross return on bonds:

1 = EtMt+1
Rt

Πt+1

.

See the appendix for more details.

2.2 The final good producer

The final good yt is produced by a perfectly competitive firm that bundles a continuum

of intermediate goods yit using the production function:

yt =

(∫ 1

0

y
ε−1
ε

it di

) ε
ε−1

(8)

where ε is the elasticity of substitution. The final good producer maximizes profits subject

to the production function (8) and taking as given the price of the final good, pt, and all

intermediate goods prices pit. Well-known results tell us that:

pt =

(∫ 1

0

p1−ε
it di

) 1
1−ε

.
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2.3 Intermediate good producers

There is a continuum of differentiated intermediate good producers that combine capital

and labor with the production function:

yi.t = max
{
Atk

α
i,tl

1−α
i,t − φzt, 0

}
. (9)

The common neutral technological level At follows a random walk with a drift in logs:

logAt = logAt−1 + ΛA + σAεA,t − (1− α) dtθt, εA,t ∼ N (0, 1) ,

subject to a Gaussian shock εA,t and a rare disaster shock dt with a time-varying impact

θt. Following Gourio (2012), disasters reduce physical capital and total output by the same

factor. This can be easily generalized at the cost of heavier notation and, possibly, additional

state variables. Note the presence of a common fixed cost φzt, which we index by a measure

of technology,

zt = A
1

1−α
t µ

α
1−α
t

to ensure that such fixed cost remains relevant along the equilibrium dynamics of the model.

Intermediate good producers rent labor and capital in perfectly competitive markets with

flexible wages and rental rates of capital. However, intermediate good producers set prices à

la Calvo. In each period, a fraction 1 − θp of intermediate good producers reoptimize their

prices to p∗t = pit (the reset price is common across all firms that update their prices). All

other firms keep their old prices. This pricing structure yields the standard Calvo block (see

derivation in the appendix):

kt
lt

=
α

1− α
wt
rt

(10)

g1
t = mctyt + θpEMt+1

(
Πχ
t

Πt+1

)−ε
g1
t+1 (11)

g2
t = Π∗tyt + θpEMt+1

(
Πχ
t

Πt+1

)1−ε(
Π∗t

Π∗t+1

)
g2
t+1 (12)

εg1
t = (ε− 1) g2

t (13)

mct =

(
1

1− α

)1−α(
1

α

)α
w1−α
t rαt
At

. (14)

Here, Πt ≡ pt
pt−1

is the inflation rate in terms of the final good, Π∗t ≡
p∗t
pt

is the ratio between the

reset price and the price of the final good, mct is the marginal cost of the intermediate good

producer, and g1
t and g2

t are auxiliary variables that allow us to write this block recursively.
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2.4 The monetary authority

The monetary authority sets the nominal interest rate according to the Taylor rule:

Rt

R
=

(
Rt−1

R

)γR ((Πt

Π

)γΠ

(
yt
yt−1

exp (Λy)

)γy)1−γR

eσmεm,t (15)

where εm,t ∼ N (0, 1) is a monetary shock, the variable Π is the target level of inflation, and

R the implicit target for the nominal gross return of bonds (which depends on Π, β, and the

growth rate along the balanced growth path of the model). The proceedings from monetary

policy are distributed lump-sum to the representative household.

2.5 Aggregation

The aggregate resource constraint is given by:

ct + xt =
1

vpt

(
Atk

α
t l

1−α
t − φzt

)
(16)

where

vpt =

∫ 1

0

(
pit
pt

)−ε
di

is a measure of price dispersion with law of motion:

vpt = θp

(
Πχ
t−1

Πt

)−ε
vpt−1 + (1− θp) (Π∗t )

−ε .

2.6 Asset prices

Rare disasters have a large impact on asset prices. In fact, this is the reason they have

become so popular. Thus, it is worthwhile to spend some space reviewing the asset pricing

implications of the model. First, we have that the price of a one-period risk-free real bond,

qft , is determined by the Euler condition:

qft = Et (Mt+1) .

Second, the price of a claim to the stream of dividends divt = yt − wtlt − xt (all income

minus labor income and investment), which we can call equity, is equal to:

qet = Et
(
Mt+1

(
divt+1 + qet+1

))
.
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In our budget constraint, we specified that the household owns the physical capital and rents

it to the firm. Given our complete markets assumption, this is equivalent to the firm owning

the physical capital and the household owning these claims to dividends. Our specification

makes deriving optimality conditions slightly easier.

Third, we can define the price-earnings ratio:

qet
divt

= Et
(
Mt+1

divt+1

divt

(
1 +

qet+1

divt+1

))
.

All these prices can be solved indirectly, once we have obtained the solution of Mt+1

and other endogenous variables, or simultaneously. In this paper, we will solve for qft and

qet simultaneously with the other endogenous variables. This will show the flexibility of

our approach. In general, it is not a good numerical strategy to solve simultaneously for

volatile asset prices. For example, the price of a consol fluctuates wildly, especially if the

expected return is low or even negative. This happens when disaster risk suddenly rises.

The perturbation solution for the price of this asset would display large Taylor coefficients

that converge very slowly. The Taylor projection method may even fail to give a solution,

because it builds on the assumption that variables fluctuate within the convergence domain

of their Taylor series. Note that in models with financial frictions, it is necessary to solve

simultaneously for real variables and asset prices, as the latter influences the values of the

former.

2.7 Stripping down the full model

In our analysis below, we will solve eight versions of the model in order to examine the

computational properties of the solution for models of different size and complexity.

Version 1 of the model is a benchmark real business cycle model with Epstein-Zin prefer-

ences and time-varying disaster risk. Prices are fully flexible, the intermediate good producers

do not have market power (i.e., ε goes to infinity), and there are no adjustment costs in in-

vestment. Hence, instead of the the Calvo block (10)-(14), factor prices are determined by

their marginal products:

rt = αAtk
α−1
t l1−αt (17)

wt = (1− α)Atk
α
t l
−α
t . (18)

The benchmark version consists of four state variables: planned capital k∗t−1, disaster shock

dt, disaster risk θt, and technology innovations σAεA,t. Also, since the model satisfies the

classical dichotomy, we can ignore the Taylor rule.
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Version 2 of the model introduces investment adjustment costs to version 1, but not the

investment-specific technological shock. This adds past investment xt−1 as another state

variable. We still ignore the monetary part of the model.

Version 3 of the model reintroduces price rigidity. Since we start using the Calvo block

(10)-(14), we need two additional state variables: past inflation Πt−1 and price dispersion vpt−1.

However, in this version 3, we employ a simple Taylor rule that responds only to inflation.

Versions 4 and 5 extend the Taylor rule so it responds to output growth and the past interest

rate. These two versions introduce past output and interest rate as additional state variables.

But, in all three versions, there are no monetary shocks to the Taylor rule.

Finally, versions 6, 7, and 8 of the model introduce the investment-specific technological

shock, the monetary shocks, and the preference shocks. These shocks are added to the vector

of state variables one by one. Therefore, the full model that we described in detail in this

section (version 8) contains 12 state variables.

3 Calibration

Before we compute the model, we normalize all relevant variables to obtain stationarity.

We follow the normalization scheme in Fernández-Villaverde and Rubio-Ramı́rez (2006).

The model is calibrated at a quarterly frequency. When needed, Gaussian shocks are

discretized by monomial rules with 2nε nodes (for nε shocks). Parameter values are listed

in Table 1. Most parameters are taken from Fernández-Villaverde, Guerrón-Quintana, and

Rubio-Ramı́rez (2015), who perform a structural estimation of a very similar DSGE model

(hereafter FQR). There are three exceptions. The first exception is Epstein-Zin parameters

and standard deviation of TFP shocks, which we take from Gourio (2012).

The second exception is the three parameters in the Taylor rule, which we calibrate

somewhat more conservatively than those in FQR. Specifically, we pick the inflation target

to be 2 percent annually, the inflation parameter γΠ to be 1.3, which satisfies the Taylor

principle, and the interest smoothing parameter γR to be 0.5. The estimated values of γR

and γΠ in FQR are less common in the literature. Furthermore, when combined with rare

disasters, they generate too strong, and empirically implausible, nonlinearities.

The third exception is the parameters related to disasters. In the baseline calibration,

we calibrate the mean disaster impact θ̄ such that output loss in a disaster is 40 percent.

This is broadly in line with the figures presented by Barro (2006), who indicates an average

contraction of 35 percent (compared to trend). We do not account for partial recoveries, so

the impact of disaster risk may be overstated. For our purposes, this type of bias makes the

model more difficult to solve because the nonlinearity is stronger. The persistence of disaster
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risk is set at ρθ = 0.9, which is close to Gourio (2012) and Gabaix (2012), although these

researchers use specifications that are slightly different from ours. The standard deviation of

the disaster risk is calibrated at σθ = .025. The four disaster parameters - disaster probability,

mean impact, persistence, and standard deviation - have a strong effect on the precautionary

saving motive and, hence, on asset prices and equilibrium dynamics. Ideally, these parameters

should be jointly estimated, but, to keep our focus, we do not pursue this route in the present

paper. Instead, we choose parameter values that generate realistic risk premia and that are

broadly consistent with the previous literature.

We also consider an alternative no-disaster calibration. In this calibration, we set the

mean and standard deviation of the disaster impact very close to zero, while keeping all

the other parameter values as in the baseline calibration in Table 1. We do so in order to

benchmark our results without disasters and gauge the role of large risks in terms of accuracy

and computational time.

4 Solution Methods

Given that we will deal with models with up to 12 state variables, we can only investigate

solution methods that scale well in terms of the dimensionality of the state space. This

eliminates, for example, value function iteration or projection methods based on tensors. The

three methods left on the table are perturbation (a particular case of which is linearization),

Taylor projection, and Smolyak collocation.4 The methods are implemented for different

polynomial orders. More concretely, we will aim at computing 176 solutions, with 11 solutions

per each of the eight versions of the model -perturbations from order 1 to 5, Taylor projections

from order 1 to 3, and Smolyak collocation from level 1 to 3- and the two calibrations described

above, the baseline calibration and the no-disaster calibration. As we will describe below, we

could not find a few of the Smolyak collocation solutions.

Perturbation and Smolyak collocation are well-known methodologies. They are described

in detail in Fernández-Villaverde, Rubio-Ramı́rez, and Schorfheide (2016). In comparison,

Taylor projection is a new method recently proposed by Levintal (2016). We discuss the

three methods briefly in the next pages. But, before doing so, we need to introduce some

notation.

4Judd, Maliar, and Maliar (2011) is a possible alternative solution, based on a simulation method. Maliar
and Maliar (2014) survey the recent developments in simulation methods. We abstract from simulation
methods, because the Smolyak collocation method is already satisfactory in terms of computational costs.
Possibly, for larger models simulation methods may be more efficient than Smolyak collocation, although we
will later introduce some comments on why we conjecture that, for this class of models, simulation methods
may be difficult to implement.
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Following Schmitt-Grohé and Uribe (2004), we cast the model in the following form:

Etf (yt+1, yt, xt+1, xt) = 0 (19)

yt = g (xt) (20)

xt+1 = h (xt) + ηεt+1, (21)

where xt is a vector of nx state variables, yt is a vector of ny control variables, f : R2nx+2ny →
Rnx+ny , g : Rnx → Rny , h : Rnx → Rnx , η is a known matrix of dimensions nx× nε, and ε is a

nε×1 vector of zero mean shocks. The first equation gathers all expectational conditions, the

second one maps states into controls, and the last one gives us the law of motion for states.

Equations (19)-(21) constitute a system of ny + nx functional equations in the unknown

policy functions g and h. In practical applications, some of the elements of h are known

(e.g. the evolution of the exogenous state variables), so the number of unknown functions

and equations is smaller.

4.1 Perturbation

Perturbation introduces a perturbation parameter σ that controls the volatility of the

model. Specifically, equation (21) is replaced with:

xt+1 = h (xt) + σηεt+1.

At σ = 0, the model boils down to a deterministic model. The steady state of the

deterministic model, denoted x̄, is calculated (assuming it exists). Then, by applying the

implicit function theorem, we recover the derivatives of the policy functions g and h with

respect to x and σ. Having these derivatives, the policy functions are approximated by

a Taylor series around x̄. To capture risk effects, the Taylor series must include at least

second-order terms (Schmitt-Grohé and Uribe, 2004).

High-order perturbation solutions have been developed and explored by Judd (1998), Gas-

par and Judd (1997), Jin and Judd (2002), Schmitt-Grohé and Uribe (2004), and Aruoba,

Fernández-Villaverde, and Rubio-Ramı́rez (2006), among others. Obtaining perturbation

solutions is easy for low orders, but the problem becomes cumbersome at high orders, espe-

cially for large models. In this paper, we use the perturbation algorithm presented in Levintal

(2015), which allows to solve models with non-Gaussian shocks up to the fifth order.
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4.2 Smolyak collocation

Collocation is one of the projection methods introduced by Judd (1992). The policy

functions g (x) and h (x) are approximated by polynomial functions ĝ (x,Θg) and ĥ (x,Θh),

where Θg and Θh are the polynomial coefficients of ĝ and ĥ, respectively. Let Θ = (Θg,Θh)

denote a vector of size nΘ of all polynomial coefficients. Substituting in equation (19) yields

a residual function R (xt,Θ):

R (xt,Θ) = Etf
(
ĝ
(
ĥ (xt,Θh) + ηεt+1,Θg

)
, ĝ (xt,Θg) , ĥ (xt,Θh) + ηεt+1, xt

)
.

Collocation methods evaluate the residual function R (x,Θ) at N points {x1, . . . , xN}, and

find the vector Θ for which the residual function is zero at all points. This requires solving

a nonlinear system for Θ:

R (xi,Θ) = 0, ∀i = 1, . . . , N. (22)

The number of grid points N is chosen such that the number of conditions is equal to the

number of coefficients to be solved (nΘ).

Since DSGE models are multidimensional, the choice of the basis function is crucial for

computational costs. We follow Krüger and Kubler (2004) by using Smolyak polynomials as

the basis function. Smolyak polynomials are products of Chebyshev polynomials, but unlike

tensor products, which grow exponentially, the number of terms in Smolyak polynomials

grows polynomially with the number of state variables. We implement Smolyak polynomials

of levels 1, 2, and 3. These approximation levels vary in the size of the basis function. The

level 1 approximation contains 1 + 2nx terms, the level 2 contains 1 + 4nx + (4nx (nx − 1)) /2

terms, and the level 3 contains 1+8nx+12nx (nx − 1) /2+8nx (nx − 1) (nx − 2) /6 terms (see

Krüger and Kubler, 2004, for details). The Smolyak approximation level is different from the

polynomial order, as it contains higher order terms. For instance, an approximation of level 1

contains quadratic terms. Hence, the number of terms in a Smolyak basis of level k is larger

than the number of terms in a k order complete polynomial.

The first step of this approach is to construct the grid {x1, . . . , xN}. The bounds of the

grid affect the accuracy of the solution. For a given basis function, a wider grid reduces

accuracy, because the same approximating function has to fit a larger domain of the state

space. Generally, we would like to have a good fit at points that the model is more likely to

visit, at the expense of other less likely points.

Disaster models pose a special challenge for grid-based methods, because the disaster

periods are points of low likelihood, but with a large impact. Hence, methods that build a grid

over a high probability region are not appropriate for disaster models (see a recent summary
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in Maliar and Maliar, 2014). For this reason, we choose a more conservative approach and

construct the grid by a hypercube. Specifically, we obtain a third-order perturbation solution,

which is computationally cheap, and use it to simulate the model. Then, we take the smallest

hypercube that contains all the simulation points (including the disaster periods) and build a

Smolyak grid over the hypercube. In the level-3 Smolyak approximations, we had to increase

the size of the hypercube by up to 60 percent; otherwise, the Jacobian would be severely

ill-conditioned (we use the Newton method; see below). Our grid method is extremely fast,

so we ignore its computational costs in our run time comparisons.5

The final, and most demanding, step is to solve the nonlinear system (22). Previous

studies have used time iteration, e.g., Krüger and Kubler (2004), Malin, Krüger, and Kubler

(2011), and Fernández-Villaverde, Gordon, Guerrón-Quintana, and Rubio-Ramı́rez (2015),

but this method can be slow. More recently, Maliar and Maliar (2014) have advocated

the use of fixed-point iteration as a faster algorithm. For the size of our models (up to 12

state variables), we find that a Newton method with analytic Jacobian performs surprisingly

well. The run time of the Newton method is faster than that of the fixed-point methods

reported in the literature for models of similar size, e.g. see Judd, Maliar, Maliar, and Valero

(2014). Moreover, the Newton method ensures convergence if the initial guess is sufficiently

good, whereas fixed-point iteration does not guarantee convergence even if it starts near

the solution. Our initial guess is a third-order perturbation solution, which proves to be

sufficiently accurate for the models we study. Thus, the Newton method converges in just a

few iterations. The main cost we encounter is the memory constraint, which becomes binding

at a level-3 approximation for the largest model (12 state variables).6

The algorithm employed in solving the nonlinear system dictates the type of basis function

and grid that should be used. Since we apply the Newton method, we must use a basis

function and a grid that yield a numerically stable system. Our implementation of Smolyak

collocation has this property. By comparison, methods that use derivative-free solvers (e.g.,

Maliar and Maliar, 2015) gain more flexibility in the choice of basis functions and grids, but

lose the convergence property of Newton-type solvers, which are particularly convenient in

our case because we have access to a good initial guess.

5Judd, Maliar, Maliar, and Valero (2014) propose to replace the hypercube with a parallelotope that
encloses the ergodic set. This technique may increase accuracy if the state variables are highly correlated.
In our case, the correlation between the state variables is very low (piecewise correlation is 0.14 on average),
so the potential gain from this method is small, while computational costs are higher. More recently, Maliar
and Maliar (2014, 2015) have proposed new types of grids. We skip the implementation of these more
advanced techniques because our collocation method already performs well and the new ideas, which carry
computational costs of their own, may be more useful in other classes of models.

6We work on a Dell computer with a Intel(R) Core(TM) i7-5600U Processor and 16GB RAM, and our
codes are written in MATLAB/MEX.
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4.3 Taylor projection

Taylor projection is a new type of projection method proposed by Levintal (2016). As with

standard projection methods, the goal is to find Θ for which the residual function R (x,Θ),

defined by equation (22), is approximately zero over a certain domain of the state space that

is of interest. Taylor projection builds on the Taylor theorem, which states that R (x,Θ) can

be approximated in the neighborhood of x0 by a kth-order Taylor series about x0. If the

kth-order Taylor series is exactly zero (i.e., all the Taylor coefficients up to the kth-order are

zero), then R (x,Θ) ≈ 0 in the neighborhood of x0. Thus, Taylor projection finds Θ for which

the kth-order Taylor series of the residual function about x0 is exactly zero. This amounts

to finding Θ that solves:

R (x0,Θ) = 0

∂R (x,Θ)

∂xi

∣∣∣∣
x0

= 0, ∀i = 1, . . . , nx

∂2R (x,Θ)

∂xi1∂xi2

∣∣∣∣
x0

= 0, ∀i1, i2 = 1, . . . , nx

...

∂kR (x,Θ)

∂xi1 · · · ∂xik

∣∣∣∣
x0

= 0, ∀i1, . . . , ik = 1, . . . , nx. (23)

Namely, the residual function and all its derivatives up to the kth-order should be zero at x0.

When this holds, all the terms of the kth-order Taylor series of R (x,Θ) about x0 are zero.

System (23) is solved for Θ using the Newton method with the analytic Jacobian. For

comparability with Smolyak collocation, we use the same initial guess, which is a third-order

perturbation solution, and the same stopping rule for the Newton method.

Taylor projection offers several computational advantages over standard projection meth-

ods. First, a grid is not required. The polynomial coefficients are identified by information

that comes from the model derivatives, rather than a grid of points. Second, the basis

function is a complete polynomial. This gives additional flexibility over Smolyak polynomi-

als. For instance, interaction terms can be captured by a second-order solution, which has

1 + nx + nx (nx + 1) /2 terms in the basis function. In Smolyak polynomials, interactions

show up only at the level-2 approximation with 1 + 4nx + (4nx (nx − 1)) /2 terms in the basis

function (asymptotically 4 times larger). More terms in the basis function translate into a

larger Jacobian, which is the main computational bottleneck of the Newton method. Finally,

the Jacobian of Taylor projection is much sparser than the one from collocation. Hence, the

computation of the Jacobian and the Newton step is cheaper.
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The main cost of Taylor projection is the computation of all the derivatives. Note that the

Jacobian requires differentiation of the nonlinear system (23) with respect to Θ. These deriva-

tives can be computed efficiently by the chain rule method developed by Levintal (2015). This

method expresses high-order chain rules in compact matrix notation that exploits symmetry,

permutations, and repeated partial derivatives. The chain rules can also take advantage of

sparse matrix (or tensor) operations. For more details, see Levintal (2016).

5 Results

We are finally ready to discuss our results. In three subsections, we will describe our

findings in terms of accuracy, simulations, and computational costs.

5.1 Accuracy

Following the literature, we assess the accuracy of the various solution methods in two

ways. As proposed by Judd (1992), we compare the mean and maximum unit-free Euler

errors across the ergodic set of the model. We approximate this ergodic set by simulating

the model with the solution that was found to be the most accurate (third-order Taylor

projection).

We first report accuracy measures for the no-disasters calibration model to benchmark our

results. Tables 2-3 report the mean and maximum error for this calibration. As expected, all

11 solutions are reasonably accurate for each of the 8 versions of the model. The mean Euler

errors (in log10 units) range from around -2.7 (for a first-order perturbation) to -10.2 (for a

level-3 Smolyak). The max Euler errors range from -1.3 (for a first-order perturbation) to -9.3

(for a level-3 Smolyak). These results replicate the well-understood notion that models with

weak volatility can be approximated well by linearization. See, for a similar result, Aruoba,

Fernández-Villaverde, and Rubio-Ramı́rez (2006).7

Tables 4-5 report the accuracy measures for the baseline calibration.8 The accuracy

measures change significantly when disasters are introduced into the model. The mean and

maximum errors are now, across all solutions, 2-3 orders of magnitude larger than before.

7All through this section, we approximate the same set of variables by all methods and use the model
equations to solve for the remaining variables. While applying perturbation methods, researchers usually
employ instead the perturbation solution for all variables. We avoid that practice because we want to be
consistent across all solution methods.

8The results for the level-1 Smolyak collocation are partial, because the Newton solver did not converge
in all cases. The level-3 Smolyak could not be solved for version 8 of the model due to insufficient memory.
Also, for the level-3 Smolyak and to avoid ill-conditioned Jacobians, the size of the grid was increased by 30
percent for version 3 of the model and by 60 percent for versions 4-7.
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First-order perturbation and Taylor projection solutions are severely inaccurate, with max

Euler errors as high as -0.4. Higher-order perturbation solutions are more accurate, but

errors are still relatively large. In particular, we find that a third-order perturbation solution

is unlikely to be accurate enough, with mean Euler errors between -1.8 and -2.4 and max Euler

errors between -1.7 and -1.9. Even a fifth-order perturbation can generate a disappointing

mean Euler error of between -1.9 and -3.5.

In comparison, second- and third-order Taylor projections deliver a much more solid

accuracy, with mean Euler errors between -3.6 and -6.9. Interestingly, the max Euler errors

are about two orders of magnitude larger, suggesting that in a few rare cases these solutions

are significantly less accurate. We will later explore whether the differences between mean

and max Euler errors are economically significant.

The Smolyak solution improves over the fifth-order perturbation solution, but it is less

accurate than a Taylor projection of comparable order. How can this happen given the

higher-order terms in the polynomials forming the Smolyak solution? Because of the strong

nonlinearity generated by rare disasters. The Smolyak method has to extrapolate outside the

grid. Since the grid already contains extreme points (rare disasters), extrapolating outside

these extreme points introduces even more extreme points (e.g., a disaster period that occurs

right after a disaster period). By comparison, Taylor projection evaluates the residual func-

tion and its derivatives at one point, which is a normal period. Thus, it has to extrapolate

only for next-period likely outcomes, which can be either normal or disaster periods. This

reduces the approximation errors that contaminate the solution.

To dig deeper, we plot in Figure 1 the model residuals across the ergodic set for the four

most accurate solutions (second- and third-order Taylor projection and Smolyak collocation).

We use version 7 of the model, for which we have all four solutions. These plots reveal the

different pattern of the errors of Taylor projection compared to Smolyak collocation. Taylor

projection exhibits very small errors throughout most of the sample, except for two peaks of

high errors, which occur around disaster periods. Since Taylor projection zeros the Taylor

series of the residual function, the residuals are small as long as the model stays around the

center of the Taylor series (the steady state in our case). Namely, Taylor projection yields a

locally accurate solution, which deteriorates at points distant from the center. Fortunately,

these points are relatively unlikely, even considering the effects of disaster risk.

In principle, it is possible to improve the accuracy of Taylor projection by solving the

model at multiple points, as done in Levintal (2016). For instance, we could solve the model

also at a disaster period and use this solution when the model visits that point. However, for

these solutions to be accurate an important condition must hold: the state variables must

not change dramatically (in probability) from the current period to the future period. This
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condition holds when the model is in a normal state, because it is highly likely that it stays

at a normal state the next period as well. However, if the model is in a disaster state, it is

very likely that it will change to a normal state the next period. Hence, solving the model

in a disaster state is prone to higher approximation errors. Nevertheless, it is important to

understand this property of Taylor projection, because one can build the model in such a way

that the future state of the economy is likely to be similar to the current state (for instance,

by increasing the frequency of the calibration or the persistence of the exogenous shocks).

The Smolyak errors depicted in Figure 1 are more evenly distributed than the Taylor pro-

jection errors. This is not surprising, because the collocation algorithm minimizes residuals

across the collocation points, which represent the ergodic set. This also reflects the uniform

convergence of projection methods (Judd, 1998). The problem is that the disaster periods

tilt the solution towards these rare episodes at the expense of the more likely normal states.

As a result, the errors in normal states get larger, because the curvature of the basis function

is limited. The solution to the problem is to increase the Smolyak order, but as shown below,

the computational costs are too high.

5.2 Simulations

Our second step is to compare the equilibrium dynamics generated by the different so-

lutions. In particular, we look at two standard outputs from DSGE models: moments from

simulations and impulse response functions.

Rare disasters generate a strong impact on asset prices and risk premia. The solution

methods should be able to approximate these effects. Hence, we examine how the different

solutions approximate the prices of the two assets in our model: equity and risk-free bonds.

Tables 6-7 present the mean risk-free rate and the mean return on equity across simulations

generated by the different methods. We focus on version 7 of the model, for which we have

all the solutions. By the previous accuracy measures, the most accurate solutions are Taylor

projection of orders 2 and 3, and Smolyak collocation of orders 2 and 3. The mean risk-free

rate in these four solutions is 1.7-1.8 percent. Note that despite the differences in mean and

maximum Euler errors, from an economic viewpoint, these four solutions yield roughly the

same result. The differences across the four solutions are smaller than 0.06.

By comparison, perturbation solutions, which have been found to be less accurate, gen-

erate a much higher risk-free rate, ranging from 4.8 percent at the first order to 2.3 percent

at the fifth order. At the third order (a popular choice when solving models with stochastic

volatility), the risk-free rate is 2.9 percent. Therefore, our evidence suggests that perturba-

tion methods fail to approximate accurately the risk-free rate, unless one goes for very high
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orders. At the fifth order, the approximation errors are relatively small, which is consis-

tent with the results obtained by Levintal (2015). Nevertheless, researchers that seek higher

accuracy should use different methods. The approximation of the mean return on equity is

more volatile across the different perturbation solutions, but fairly close to the 5.8-5.9 percent

obtained by the four accurate solutions.

We next examine impulse response functions. We focus on the disaster variables, which

generate the main nonlinearity in our model. Figure 2 presents the response of the model

to a disaster shock. The initial point is the fixed point to which the model converges in the

absence of shocks. The figure plots the response of output, investment, and consumption.

In the left panels we plot three perturbation solutions and a third-order Taylor projection.

In the right panels we plot the three Taylor projections and Smolyak levels 2 and 3 (the

mnemonics in the figure should be easy to read). Although the scale of the shock is large

and, therefore, it tends to cluster all impulse response functions, we can see some non-trivial

differences in the impulse response functions from low-order perturbations with respect to

all the other impulse response functions (furthermore, the model is solved for the detrended

variables, which are much less volatile).

Figure 3 plots the impulse response functions of a disaster risk shock (θt). We assume that

the disaster impact θt rises from a contraction of 40 percent to a contraction of 45 percent,

which under our calibration is a 3.5 standard deviation event. As explained in section 3, this

relatively small change has a large impact on the model, because the model is highly sensitive

to the disaster parameters. All solutions generate in response a decline in detrended output,

investment, and consumption, but the magnitudes differ considerably. As before, the left

panels of the figure compare the perturbation solutions to a third-order Taylor projection.

Low-order perturbation solutions fail to approximate well the model dynamics, although the

fifth-order perturbation is relatively accurate. The right panel of Figure 3 shows a similarity

of the four most accurate solutions (second- and third-order Taylor projection and Smolyak

levels 2 and 3). We read this figure, as well as the results from Tables 6-7, as suggesting

that the solutions generated by a second- and third-order Taylor projection are economically

indistinguishable from the solutions from a Smolyak collocation.

Figure 4 shows similar impulse response functions, but only for the four most accurate

solutions. The left panel depicts the same impulse response as in Figure 3 with some zooming

in. The right panel shows impulse response functions for a larger shock, which increases the

anticipated disaster impact from 40 percent to 50 percent. Given the standard deviation of

θt, which is calibrated at 2.5 percent, the shock we consider is a 7 standard deviation event.

Barro (2006) points out that, while rare, this is a shock that is sometimes observed in the

data. Note that differences among the solutions are economically small (the scale is log).
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Nevertheless, there seem to be two clusters of solutions: second-order Taylor projection and

Smolyak level-2 and third-order Taylor projection and Smolyak level-3.

We conclude from this analysis that second- and third-order Taylor projections and

Smolyak solutions are economically similar. We could not find a significant difference be-

tween these solutions. The other solutions are relatively poor approximations, except for the

fifth-order perturbation solution, which is reasonably good.

5.3 Computational costs

Our previous findings suggest that the second- and third-order Taylor projections and

Smolyak solutions are similar. However, when it comes to computational costs, there are

more than considerable differences among the solutions. Table 8 reports total run time (in

seconds) for each solution. The second-order Taylor projection is the fastest method among

the four accurate solutions by a large difference. It takes less than 3 seconds to solve the

seventh version of the model with second-order Taylor projection, 100 seconds with third-

order Taylor projection, 31 seconds with second-order Smolyak and 4,067 seconds with third-

order Smolyak. Given that these solutions are roughly equivalent, this is a remarkable result.

Taylor projection allows us to solve large and highly nonlinear models in a few seconds, and

potentially to nest the solution within an estimation algorithm, where the model needs to be

solved hundreds of times for different parameter values. Note also that a second-order Taylor

projection takes considerably less time than a fifth-order perturbation (3.5 seconds versus

60.3 seconds for the full model), even if its mean Euler errors are smaller (-3.6 versus -2.2).

The marginal costs of the different methods are extremely heterogeneous. Moving from

version 7 to version 8 of the model adds only one exogenous state variable. This change

increases the run time of a second-order Taylor projection by 0.8 second. By comparison,

a third-order Taylor projection takes about 61 more seconds, Smolyak level-2 takes roughly

31 more seconds, and Smolyak level-3 could not be computed due to insufficient memory.

Extrapolating these trends forward implies that the differences in computational costs across

solutions would increase rapidly with the size of the model.

We conclude that the second-order Taylor projection solution delivers the best accu-

racy/speed tradeoff among the tested solutions. The run time of this method is sufficiently

fast to enable estimation of the model, which would be much more difficult with the other

methods tested. For researchers interested in higher accuracy at the expense of higher costs,

we recommend the third-order Taylor projection solution, which is faster than a Smolyak

solution of comparable order.

Finally, we provide MATLAB codes that perform the Taylor projection method on the class
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of models defined in section 4. Given these codes, Taylor projection is as straightforward

and easy to implement as standard perturbation methods. In comparison, coding a Smolyak

collocation requires some degree of skill and care.

6 Conclusions

Models with rare disasters have become a popular line of research in macroeconomics and

finance. However, rare disasters, by inducing significant non-linearities, present non-trivial

computational challenges that have been largely ignored in the literature or dealt with only

in a non-systematic fashion. To fill this gap, in this paper, we formulated and solved a

New Keynesian model with time-varying disaster risk (including several simpler versions of

it). Our findings were as follows. First, low-order perturbation solutions (first, second, and

third) do not offer enough accuracy as measured by the Euler errors, computed statistics, or

impulse response functions. A fifth-order perturbation fixes part of the problem, but it is

still not entirely satisfactory regarding accuracy and it imposes some serious computational

costs. Second, a second-order Taylor projection seems an excellent choice, with a satisfactory

balance of accuracy and run time. A third-order Taylor projection can handle a medium

size model with even better accuracy, but at a higher cost. Finally, Smolyak collocation

methods were accurate, but they were hard to implement (we failed to find a solution on

several occasions and faced memory limitations) and suffered from long run times.

This paper should be read only as a preliminary progress report. There is much more to

be learned about the properties of models with rare disasters than we can cover in one paper.

However, we hope that our results will stimulate further investigation on the topic.
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7 Appendix

7.1 Euler Conditions

Define the household’s maximization problem as follows:

max
ct,k∗t ,xt,lt

{
U1−ψ
t + βEt

(
V 1−γ
t+1

) 1−ψ
1−γ

}
s.t. ct + xt − wtlt − rtkt − Ft − Tt = 0

k∗t − (1− δ) kt − µt
(

1− S
[
xt
xt−1

])
xt = 0

kt+1 = k∗t exp (−dt+1θt+1) .

Note that the value function Vt depends on the household’s actual stock of capital kt and on

past investment xt−1, as well as on aggregate variables and shocks that the household takes

as given. Thus, let us use Vk,t and Vx,t to denote the derivatives of Vt with respect to capital

kt and past investment xt−1 (assuming differentiability). These derivatives are obtained by

the envelope theorem:

(1− ψ)V −ψt Vk,t = λtrt +Qt (1− δ) (24)

(1− ψ)V −ψt Vx,t = QtµtS
′
[
xt
xt−1

](
xt
xt−1

)2

, (25)

where λt and Qt are the Lagrange multipliers associated with the budget constraint and the

evolution law of capital (they enter the Lagrangian in negative sign). We exclude the third

constraint from the Lagrangian and substitute it directly in the value function or the other

constraints, whenever necessary.

Differentiating the Lagrangian with respect to ct, k
∗
t , xt, and lt yields the first-order

conditions:

(1− ψ)U−ψt Uc,t = λt (26)

(1− ψ) βEt
(
V 1−γ
t+1

) γ−ψ
1−γ Et

(
V −γt+1Vk,t+1 exp (−dt+1θt+1)

)
= Qt (27)

λt = Qtµt

[(
1− S

[
xt
xt−1

])
− S ′

[
xt
xt−1

]
xt
xt−1

]
+ (28)

+ (1− ψ) βEt
(
V 1−γ
t+1

) γ−ψ
1−γ Et

(
V −γt+1Vx,t+1

)
(1− ψ)U−ψt Ul,t = −λtwt (29)
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Substituting the envolope conditions (24)-(25) and defining:

qt =
Qt

λt

yields equations (5)-(7) in the main text.

7.2 The Calvo Block

The intermediate good producer that is allowed to adjust prices maximizes the discounted

value of its profits. Fernández-Villaverde and Rubio-Ramı́rez (2006, pp. 12-13) derive the

first-order conditions of this problem for expected utility preferences, which yield the following

recursion:

g1
t = λtmctyt + βθpEt

(
Πχ
t

Πt+1

)−ε
g1
t+1

g2
t = λtΠ

∗
tyt + βθpEt

(
Πχ
t

Πt+1

)1−ε(
Π∗t

Π∗t+1

)
g2
t+1.

To adjust these conditions to Epstein-Zin preferences, divide by λt to have:

g1
t

λt
= mctyt + βθpEt

λt+1

λt

(
Πχ
t

Πt+1

)−ε g1
t+1

λt+1

(30)

g2
t

λt
= Π∗tyt + βθpEt

λt+1

λt

(
Πχ
t

Πt+1

)1−ε(
Π∗t

Π∗t+1

)
g2
t+1

λt+1

(31)

Note that β λt+1

λt
is the stochastic discount factor in expected utility preferences. In

Epstein-Zin preferences the stochastic discount factor is given instead by (2.1). Substituting

and defining ḡ1
t =

g1
t

λt
, ḡ2

t =
g2
t

λt
yields (10)-(14). The other conditions in the Calvo block follow

directly from Fernández-Villaverde and Rubio-Ramı́rez (2006, pp. 12-13).
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paring Solution Methods for Dynamic Equilibrium Economies,” Journal of Economic Dy-

namics and Control, 30(12), 2477–2508.

Barro, R. J. (2006): “Rare Disasters and Asset Markets in the Twentieth Century,” Quar-

terly Journal of Economics, 121(3), 823–866.

(2009): “Rare Disasters, Asset Prices, and Welfare Costs,” American Economic

Review, 99(1), 243–64.

Barro, R. J., and T. Jin (2011): “On the Size Distribution of Macroeconomic Disasters,”

Econometrica, 79(5), 1567–1589.
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Table 1: Baseline Calibration

Parameter Value Source

Leisure preference (ν) 2.33 Gourio (2012)
Risk aversion (γ) 3.8 Gourio (2012)

Inverse IES (ψ̂) 0.5 Gourio (2012)
Trend growth of TFP (ΛA) .0028 FQR (2015)
Std of TFP shocks (σA) .01 Gourio (2012)
Trend growth of investment shock (Λµ) 0
Std of investment shock (σµ) .0024 FQR (2015)
Discount factor (β) .99 FQR (2015)
Cobb-Douglas parameter (α) .21 FQR (2015)
Depreciation (δ) .025 FQR (2015)
Fixed production costs (φ) 0 FQR (2015)
Disaster probability .0043 Gourio (2012)
Mean Disaster size (θ̄) .5108
Persistence of disaster risk shock (ρθ) .9
Std of disaster risk shock (σθ) .025
Adjustment cost parameter (κ) 9.5 FQR (2015)
Calvo parameter (θp) .8139 FQR (2015)
Automatic price adjustment (χ) .6186 FQR (2015)
Elasticity of substitution (ε) 10 FQR (2015)
Inflation target (Π) 1.0050
Inflation parameter in Taylor rule∗ (γΠ) 1.3
Output growth parameter in Taylor rule (γy) .2458 FQR (2015)
Interest smoothness in Taylor rule∗ (γR) .5
Std of monetary shock (σm,t) .0025 FQR (2015)
Persistence of intertemporal shock (ρξ) .1182 FQR (2015)
Std of intertemporal shock (σξ) .1376 FQR (2015)
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Figure 1: Model residuals across the ergodic set
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Figure 2: Impulse response functions to a disaster shock
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Figure 3: Impulse response functions to a disaster risk shock

0 5 10 15 20 25 30
-0.95

-0.94

-0.93

-0.92

-0.91
log(detrended output)

tp3

pert1

pert3

pert5

0 5 10 15 20 25 30
-0.955

-0.95

-0.945

-0.94

-0.935
log(detrended output)

tp3

tp2

tp1

smol2

smol3

0 5 10 15 20 25 30
-2.96

-2.94

-2.92

-2.9

-2.88
log(detrended investment)

tp3

pert1

pert3

pert5

0 5 10 15 20 25 30
-2.97

-2.96

-2.95

-2.94

-2.93
log(detrended investment)

tp3

tp2

tp1

smol2

smol3

0 5 10 15 20 25 30
-1.095

-1.09

-1.085

-1.08

-1.075

-1.07

-1.065
log(detrended consumption)

tp3

pert1

pert3

pert5

0 5 10 15 20 25 30
-1.1

-1.095

-1.09

-1.085

-1.08
log(detrended consumption)

tp3

tp2

tp1

smol2

smol3

36



Figure 4: Impulse response functions to small (left) and big (right) disaster risk shocks
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