The Using Fungi Treatment as Green and Environmentally Process for Surface Modification of Natural Fibres

Article Preview

Abstract:

Although Natural Fibres have various potential and advantages such as lower in weight, embodied energy and toxicity but their drawbacks are provided relentless competition between natural and synthetics fibres. Intrinsically, Natural Fibres are hydrophilic that is leaded to poor resistance to moisture and incompatible to hydrophobic polymer matrix. This incompatibility of natural fibres results in poor fibre/matrix interface which in turn leads to reduce mechanical properties of the composites. This study try to litreature some methods of chemical treatment or surface modification of Natural Fibres for improving this drawback of natural fibres. The objective of this research is fungi treatment as Green Surface Treatment that is indicate to environmental friendlier process. The use of fungi can provide low cost, highly efficient and environmentally friendly alternatives to natural fibre surface treatment.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

116-122

Citation:

Online since:

June 2014

Export:

Price:

* - Corresponding Author

[1] Food and Agricultural Organisation (FAO) of the United Nations (2006). http: /www. fao. org/newsroom/en/news/2006/1000472/index. html.

Google Scholar

[2] Gassan J, Bledzki AK. Possibilities to improve the properties of natural fiber reinforced plastics by fiber modification–jute polypropylene composites. Applied Composite Materials 2000; 7: 373–85.

Google Scholar

[3] John M, Thomas S. Biofibres and biocomposites. Carbohydr Polym 2008; 71: 343–64.

Google Scholar

[4] Sreekumar, P. A, Matrices for natural fibre reinforced composites, In K. L. Pickering (Ed. ), Properties and performance of natural fibre composite. UK: Brimingham, Woodhead Publication Limited. 2008; (p.541).

DOI: 10.1533/9781845694593.1.67

Google Scholar

[5] Hon, D.N.S. 1991. Wood and Cellulosic Chemistry. Marcel Dekker, Inc. 665. Hu, X.P., and Y.L. Hsieh. 1997. Breaking elongation distributions of single fibres. Journal of Material Science. 32(15): 3905-3912.

Google Scholar

[6] Hattalli, S.; Benaboura, A.; Castellan, A. Adding value to Alfa grass (Stipa tenacissima L. ) soda lignin as phenolic resins, Polymer Degradation and Stability. 2002, 75, 259– 264.

DOI: 10.1016/s0141-3910(02)00022-8

Google Scholar

[7] Hoareau,W.; Trindade,W.; Siegmund, B.; Castellan, A.; Frollini, E. Sugar cane bagasse and curaua lignins oxidized by chlorine dioxide and reacted with furfuryl alcohol: characterization and stability, Polymer Degradation and Stability. 2004, 86, 567–576.

DOI: 10.1016/j.polymdegradstab.2004.07.005

Google Scholar

[8] Martı-Ferrer, F.; Vilaplana, F.; Ribes-Greus, A.; Benedito-Borr´as, A.; Sanz-Box, C. Flour rice husk as filler in block copolymer polypropylene: Effect of different coupling agents, Journal of Applied Polymer Science. 2006, 99, 1823–1831.

DOI: 10.1002/app.22717

Google Scholar

[9] Summerscales J, Dissanayake NPJ, Virk AS, Hall W. A review of bast fibres and their composites. Part 1 – fibres as reinforcements. Compos A Appl Sci Manuf 2010; 41: 1329–35.

DOI: 10.1016/j.compositesa.2010.06.001

Google Scholar

[10] Wong, K. J., Nirmal, U., & Lim, B. K. Impact behavior of short and contin- uous fiber-reinforced polyester composites. Journal of Reinforced Plastics and Composites, (2010); 29(23), 3463–3474.

DOI: 10.1177/0731684410375639

Google Scholar

[11] John, M. J., & Anandjiwala, R. D. Recent developments in chemical modification and characterization of natural fiber-reinforced composites. Polymer Composites, 2008; 29(2), 187–207.

DOI: 10.1002/pc.20461

Google Scholar

[12] Belgacem, M. N., & Gandini, A. The surface modification of cellulose fibres for use as reinforcing elements in composite materials. Composite Interfaces, 2005; 12, 41–75.

DOI: 10.1163/1568554053542188

Google Scholar

[13] Netravali AN. Fiber/Resin Interface Modification in Green, Composites. In: Bhatta‐ charyya SFaD, editor. Handbook of Engineering Biopolymers Homopolymers, Blends and Composites. Munich: Hanser; 2007. pp.847-68.

DOI: 10.3139/9783446442504.028

Google Scholar

[14] Gandini MNBaA. The surface modification of cellulose fibers for use as reinforcing elements in composite materials. Composite Interfaces. 2004; 12(1-2): 41-75.

DOI: 10.1163/1568554053542188

Google Scholar

[15] Gassan J, Gutowski VS. Effects of corona discharge and UV treatment on the properties of jute-fibre epoxy composites. Composites Science and Technology 2000; 60: 2857–63.

DOI: 10.1016/s0266-3538(00)00168-8

Google Scholar

[16] Ragoubi M, Bienaimé D, Molina S, George B, Merlin A. Impact of corona treated hemp fibres onto mechanical properties of polypropylene composites made thereof. Industrial Crops and Products 2010; 31: 344–9.

DOI: 10.1016/j.indcrop.2009.12.004

Google Scholar

[17] Pizzi A, Kueny R, Lecoanet F, Massetau B, Carpentier D, Krebs A, Loiseau F, Molina S, Ragoubi M. High resin content natural matrix–natural fibre biocomposites. Industrial Crops and Products 2009; 30: 235–40.

DOI: 10.1016/j.indcrop.2009.03.013

Google Scholar

[18] Martin AR, Manolache S, Mattoso LHC, Rowell RM, Dense F. Plasma modification of sisal and high-density polyethylene composites: effect on mechanical properties. In: Natural polymers and composites proceedings. 2000. p.431–6.

Google Scholar

[19] Marais S, Gouanvé F, Bonnesoeur A, Grenet J, Poncin-Epaillard F, Morvan C, Metayer M. Unsaturated polyester composites rein- forced with flax fibers: effect of cold plasma and autoclave treatments on mechanical and permeation properties. Composites Part A: Applied Science and Manufacturing 2005; 36: 975–86.

DOI: 10.1016/j.compositesa.2004.11.008

Google Scholar

[20] Seki Y, Sever K, Sarikanat M, Guelec HA, Tavman IH. The influence of oxygen plasma treatment of jute fibre reinforced thermoplastic composites. In: Proceedings 5th international advanced technologies symposium (IATS'09). 2009. p.1–4.

Google Scholar

[21] Sinha E, Panigrahi S. Effect of plasma treatment on structure, wettability of jute fiber and flexural strength of its composite. Journal of Composite Materials 2009; 43: 1791–802.

DOI: 10.1177/0021998309338078

Google Scholar

[22] Seki Y, Sarikanat M, Sever K, Erden S, Gulec HA. Effect of the low and radio frequency oxygen plasma treatment of jute fiber on mechanical properties of jute fiber/polyester composite. Fibers and Polymers 2010; 11: 1159–64.

DOI: 10.1007/s12221-010-1159-5

Google Scholar

[23] Pothan LA, Thomas S. Polarity parameters and dynamic mechanical behavior of chemically modified banana fiber reinforced polyester composites. Composites Science and Technology 2003; 63: 1231–40.

DOI: 10.1016/s0266-3538(03)00092-7

Google Scholar

[24] Cantero G, Arbelaiz A, Llano-Ponte R, Mondragon I. Effects of fibre treatment on wettability and mechanical behavior of flax/polypropylene composites. Composites Science and Technology 2003; 63: 1247–54.

DOI: 10.1016/s0266-3538(03)00094-0

Google Scholar

[25] Xu Y, Kawata S, Hosoi K, Kawai T, Kuroda S. Thermo mechanical properties of the silanized-kenaf/polystyrene composites. eXPRESS Polymer Letters 2009; 3: 657–64.

DOI: 10.3144/expresspolymlett.2009.82

Google Scholar

[26] Ismail H, Abdul Khalil HPS. The effects of partial replacement of oil palm wood flour by silica and silane coupling agent on properties of natural rubber compounds. Polymer Testing 2000; 20: 33–41.

DOI: 10.1016/s0142-9418(99)00075-6

Google Scholar

[27] Abdul Khalil HPS, Ismail H. Effect of acetylation and coupling agent treatments upon biological degradation of plant fibre reinforced polyester composites. Polymer Testing 2000; 20: 65–75.

DOI: 10.1016/s0142-9418(99)00080-x

Google Scholar

[28] Bisanda ETN. The effect of alkali treatment on the adhesion characteristics of sisal fibres. Applied Composite Materials 2000; 7: 331–9.

Google Scholar

[29] Rout J, Tripathy SS, Nayak SK, Misra M, Mohanty AK. Scanning electron microscopy study of chemically modified coir fibers. Journal of Applied Polymer Science 2001; 79: 1169–77.

DOI: 10.1002/1097-4628(20010214)79:7<1169::aid-app30>3.0.co;2-q

Google Scholar

[30] Goda K, Sreekala MS, Gomes A, Kaji T, Ohgi J. Improvement of plant based natural fibers for toughening green composites-effect of load application during mercerization of ramie fibers. Composites Part A: Applied Science and Manufacturing 2006; 37: 2213–20.

DOI: 10.1016/j.compositesa.2005.12.014

Google Scholar

[31] Huda MS, Drzal LT, Mohanty AK, Misra M. Effect of chemical modifications of the pineapple leaf fiber surfaces on the interfacial and mechanical properties of laminated biocomposites. Composite Interfaces 2008; 15: 169–91.

DOI: 10.1163/156855408783810920

Google Scholar

[32] Seena J, Koshy P, Thomas S. The role of interfacial interactions on the mechanical properties of banana fibre reinforced phenol formaldehyde composites. Composite Interfaces 2005; 12: 581–600.

DOI: 10.1163/1568554054915183

Google Scholar

[33] Tserki V, Zafeiropoulos NE, Simon F, Panayiotou C. A study of the effect of acetylation and propionylation surface treatments on natural fibres, Composites Part A: Applied Science and Manufacturing 2005; 36: 1110–8.

DOI: 10.1016/j.compositesa.2005.01.004

Google Scholar

[34] Bledzki AK, Mamun AA, Lucka-Gabor M, Gutowski VS. The effects of acetylation on properties of flax fibre and its polypropylene composites. eXPRESS Polymer Letters 2008; 2: 413–22.

DOI: 10.3144/expresspolymlett.2008.50

Google Scholar

[35] Bledzki AK, Mamun AA, Jaszkiewicz A, Erdmann K. Polypropylene composites with enzyme modified abaca fibre. Composites Science and Technology 2010; 70: 854–60.

DOI: 10.1016/j.compscitech.2010.02.003

Google Scholar

[36] Susheel Kalia, Kamini Thakur, Annamaria Celli, Marjorie A. Kiechel, Caroline L. Schauer., Surface modification of plant fibers using environment friendly methods for their application in polymer composites, textile industry and antimicrobial activities: A review, Journal of Environmental Chemical Engineering 1 (2013).

DOI: 10.1016/j.jece.2013.04.009

Google Scholar

[37] Pickering, Kim L. ; Li, Y. ; Farrell, Roberta L. ; Lay, Mark C (2007) Interfacial modification of hemp fiber reinforced composites using fungal and alkali treatment. J Biobased Mater Bioenergy 1(1): 109–117.

DOI: 10.1166/jbmb.2007.1984

Google Scholar

[38] Alexis Baltazar-y-Jimeneza, Martina Bistritzb, Eckhard Schulzb, Alexander Bismarcka Atmospheric air pressure plasma treatment of lignocellulosic fibres: Impact on mechanical properties and adhesion to cellulose acetate butyrate. Compos Sci Technol, 2008; 68(1): 215–227.

DOI: 10.1016/j.compscitech.2007.04.028

Google Scholar

[39] P. Baldrian, V. Valaskova, Degradation of cellulose by basidiomycetous fungi, FEMS Microbiol. Rev. 32 (2008) 501–521.

DOI: 10.1111/j.1574-6976.2008.00106.x

Google Scholar

[40] Yan Li , K.L. Pickering, R.L. Farrell, Analysis of green hemp fibre reinforced composites using bag retting and white rot fungal treatments. Journal of industrial crops and products (2009) 420–426.

DOI: 10.1016/j.indcrop.2008.08.005

Google Scholar

[41] M.A. Jafari, A. Nikkhah, A.A. Sadeghi, M. Chamani, The effect of Pleurotus spp. fungi on chemical composition and in vitro digestibility of rice straw, Pak. J. Biol. Sci. 10 (2007) 2460–2464.

DOI: 10.3923/pjbs.2007.2460.2464

Google Scholar

[42] M.M. Kabir, H. Wang, K.T. Lau, F. Cardona, Chemical treatments on plant-based natural fiber reinforced polymer composites: an overview, Compos. B: Eng. 43 (2012) 2883-2892.

DOI: 10.1016/j.compositesb.2012.04.053

Google Scholar

[43] Alexopoulos CJ, Mims CW, Blackwell M, 1996. Introductory mycology, Fourth edition. New York, New York, USA: John Wiley & Sons, INC, 868 pp.

DOI: 10.2134/agronj1953.00021962004500050014x

Google Scholar

[44] Hofrichter M. Review: lignin conversion by manganese peroxidase ( MnP ). Enzyme and Microbial Technology 2002; 30: pp.454-466.

DOI: 10.1016/s0141-0229(01)00528-2

Google Scholar

[45] Forde Kohler, Lois J. ; Dinus, Ronald J. ; Malcolm, Earl W. ; Rudie, Alan W. ; Farrell, R. L. (Roberta Lee) ; Brush, T. S, 1995. Improving softwood mechanical pulp properties with Ophiostoma piliferum. Tappi Journal 80 (3): pp.135-139.

Google Scholar

[46] Candan B Tamerler, Angel T Martinez and Tajalli Keshavarz, 2001. Production of lipolytic enzymes in batch cultures of Ophiostoma piceae. Journal of Chemical Technology and Biotechnology 76: pp.991-99.

DOI: 10.1002/jctb.473

Google Scholar

[47] Call HP, Mucke I. History, overview and application of mediated lignolytic systems, especially laccase-mediator system. Journal of Biotechnology 1997; 53: pp.163-202.

DOI: 10.1016/s0168-1656(97)01683-0

Google Scholar

[48] Breen A, Singleton F. Fungi in lignocellulose breakdown and biopulping. Current Opinion in Biotechnology 1999; 10: pp.252-258.

DOI: 10.1016/s0958-1669(99)80044-5

Google Scholar

[49] Gutierrez A, Jose C. del Rio, and Martinez MJ. The biotechnological control of pitch in paper pulp manufacturing. Trends in Biotechnology 2001; 19: pp.340-348.

DOI: 10.1016/s0167-7799(01)01705-x

Google Scholar

[50] Deepaksh Gulati & Mohini Sain, 2006; Fungal-modification of Natural Fibers: A Novel Method of Treating Natural Fibers for Composite Reinforcement; J Polym Environ (2006) 14: 347–352.

DOI: 10.1007/s10924-006-0030-7

Google Scholar