Fabrication of ZnO Nanowall-Based Hydrogen Gas Nanosensor

Article Preview

Abstract:

Two-dimensional ZnO nanowalls were rapidly grown on glass substrate by thermal evaporation at low temperature without any catalysts or the pre-deposition of a ZnO seed layer on the substrate. Most of the ZnO nanowalls grown at 450°C were vertical on substrate and they were about 70-200 nm thick and 2 µm long. The room-temperature photoluminescence (PL) spectra showed a strong intrinsic ultraviolet (UV) emission and a weak defect-related emission. Hydrogen-sensing characteristics of the ZnO nanowalls have been investigated, and that make them become attractive candidates for gas sensor.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

21-25

Citation:

Online since:

April 2013

Export:

Price:

[1] C. Yang, C. X. Xu, and X. M. Wang: Langmuir, Vol. 28 (2012), p.4580.

Google Scholar

[2] G. Y. Lu, J. Xu, J. B. Sun, Y. S. Yu, Y. Q. Zhang, and F. M. Liu: Sensors and Actuators B-Chemical, Vol. 162 (2012), p.82.

Google Scholar

[3] G. Perillat-Merceroz, R. Thierry, P. H. Jouneau, P. Ferret, and G. Feuillet: Nanotechnology, Vol. 23 (2012).

DOI: 10.1088/0957-4484/23/8/085705

Google Scholar

[4] S. Chu, G. P. Wang, W. H. Zhou, Y. Q. Lin, L. Chernyak, J. Z. Zhao, J. Y. Kong, L. Li, J. J. Ren, and J. L. Liu: Nature Nanotechnology, Vol. 6 (2011), p.506.

Google Scholar

[5] B. Fang, C. H. Zhang, G. F. Wang, M. F. Wang, and Y. L. Ji: Sensors and Actuators B-Chemical, Vol. 155 (2011), p.304.

Google Scholar

[6] O. Lupan, T. Pauporte, B. Viana, and P. Aschehoug: Electrochimica Acta, Vol. 56 (2011), p.10543.

Google Scholar

[7] S. S. Warule, N. S. Chaudhari, J. D. Ambekar, B. B. Kale, and M. A. More: Acs Applied Materials & Interfaces, Vol. 3 (2011), p.3454.

Google Scholar

[8] H. T. Ng, J. Li, M. K. Smith, P. Nguyen, A. Cassell, J. Han, and M. Meyyappan: Science, vol. 300 (2003), p.1249.

Google Scholar

[9] Z. G. Yin, N. F. Chen, R. X. Dai, L. Liu, X. W. Zhang, X. H. Wang, J. L. Wu, and C. L. Chai: Journal of Crystal Growth, Vol. 305 (2007), p.296.

Google Scholar

[10] Y. J. Hong, H. S. Jung, J. Yoo, Y. J. Kim, C. H. Lee, M. Kim, and G. C. Yi: Advanced Materials, Vol. 21 (2009), p.222.

Google Scholar

[11] B. Q. Cao, T. Matsumoto, M. Matsumoto, M. Higashihata, D. Nakamura, and T. Okada: Journal of Physical Chemistry C, Vol. 113 (2009), p.10975.

Google Scholar

[12] B. Q. Cao, W. P. Cai, and H. B. Zeng: Applied Physics Letters, Vol. 88 (2006).

Google Scholar

[13] B. D. Yao, Y. F. Chan, and N. Wang: Applied Physics Letters, Vol. 81 (2002), p.757.

Google Scholar

[14] K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnade: Journal of Applied Physics, Vol. 79 (1996), p.7983.

DOI: 10.1063/1.362349

Google Scholar