Simulation of Gold Nanoparticles Aggravating MEMS Cantilever Optical Static Detection Biochip

Article Preview

Abstract:

A kind of gene detection biochip model based on biological micro electro mechanical systems (BioMEMS) technology and micro optical electro mechanical systems (MOEMS) technology is designed and simulated. In order to detect whether there are nucleic acid components in the testing samples, the biochip in this study issues horizontal light by laser, then receives and reads the deformation signals of MEMS cantilever by optical detector. The MEMS optical reflecting system can amplify MEMS cantilever deformation signal 22 times by micro reflectors which are set on the side wall of the cantilever free end. In order to improve optical detection sensitivity, gold nanoparticles (GNPs) which are combined with hybridization information is taken to aggravate MEMS cantilever, and employ Au - S chemical bond of GNPs and dithiol HS(CH2)6SH to combine and fix DNA probe, and then employ target DNA which is marked with biotin to combine GNPs by Biotin - Streptavidin combining. The simulation results show that this biochip can detect biological samples fast, high throughput, low cost, high sensitivity and reliably.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 694-697)

Pages:

966-970

Citation:

Online since:

May 2013

Export:

Price:

[1] Maria Gaczynska, and Pawel A. Osmulski, AFM of biological complexes: What can we learn? Current Opinion in Colloid & Interface Science, vol. 13, no. 5, 2008. pp.351-367.

DOI: 10.1016/j.cocis.2008.01.004

Google Scholar

[2] Zhongliang Deng, Yuetao Ge, Weiguo Guan, Naibo Zhang, Qike Cao. Nanogold aggravating MEMS cantilever capacitance detection biochip [J], Advanced Materials Research. 2011. (159). 429-433.

DOI: 10.4028/www.scientific.net/amr.159.429

Google Scholar

[3] Algre E., Legrand B., Faucher M., Walter B. and Buchaillot L., Surface microscopy with laserless MEMS based AFM probes, Micro Electro Mechanical Systems (MEMS), 2010 IEEE 23rd International Conference on. Wanchai Hong Kong, 2010. pp.292-295.

DOI: 10.1109/memsys.2010.5442509

Google Scholar

[4] Zhongliang Deng, Yuetao Ge, Qike Cao, Ke Han. The detection of a transgenic soybean biochip using gold label silver stain technology [J], Bioorganic & Medicinal Chemistry Letters. 2011. 21(22). 6905-6908.

DOI: 10.1016/j.bmcl.2011.07.037

Google Scholar

[5] J. Fritz, M. K. Baller, H. p. Lang, H. Rothuizen, P. Vettiger, E. Meyer, H. –J. Güntherodt, Ch. Gerber, J. K. Gimzewski, Translating Biomolecular Recognition into Nanomechanics, Science 288(5464), 2000. pp.316-318.

DOI: 10.1126/science.288.5464.316

Google Scholar

[6] Zhongliang Deng, Yuetao Ge, Weiguo Guan, Qike Cao. MEMS-based micro chamber PCR chip thermal analysis and structural improvement [A], 2010 IEEE International Conference on Computer, Mechatronics, Control and Electronic Engineering (CMCE 2010) [C]. Changchun China. 24-26 Aug. 2010. 130-133.

DOI: 10.1109/cmce.2010.5609894

Google Scholar

[7] Carrara S., Cavallini A., Leblebici Y., De Micheli, G.; Bhalla, V.; Valle, F.; Samori B., Benini L., Ricco B., Vikholm-Lundin I., Munter T., New probe immobilizations by lipoate-diethalonamines or ethylene-glycol molecules for capacitance DNA chip, Advances in sensors and Interfaces, 2009. IWASI 2009. 3rd International Workshop. Trani Italy, 2009. pp.9-14.

DOI: 10.1109/iwasi.2009.5184759

Google Scholar

[8] Zhongliang Deng, Yuetao Ge, Weiguo Guan, Naibo Zhang, Qike Cao. Nanogold aggravating MEMS cantilever piezoelectric optical detection biochip [J], Applied Mechanics and Materials. 2011. (39). 198-202.

DOI: 10.4028/www.scientific.net/amm.39.198

Google Scholar

[9] Tokachichu D.R., Bhushan B., Bioadhesion of polymers for BioMEMS, IEEE Trans. Nanotech. vol. 5, no. 3, 2006. pp.228-231.

DOI: 10.1109/tnano.2006.874047

Google Scholar