Shape Memory Alloys for Biomedical Applications

Article Preview

Abstract:

NiTi shape memory alloy (SMA) products appeared to the medical markets in 1980’s, their global market being more than US$ 130 billion in 2002. In most medical applications material must be biocompatible. NiTi offers the bodytemperature activated shape memory effect (SME), superelasticity (SE) and the damping capacity, which all can be applied in medical use. The dental arch wires and stents are benefiting from SE. The NiTi vena cava filters obtain their umbrella shaped mesh when SMEactivated. Generally the NiTi tubes and guidewires are applied in the minimally invasive medical procedures and in the interventional radiology. There are numerous steerable, hingeless, kink resistant, highly flexible clinical instruments that may provide constant force. NiTi is used for the dental implants and the attachments of the partial dentures and for the orthopaedics. In the latter one the main applications are the clamps for connecting bone fractures or parts for e.g. the spinal bentcalibration bar. Miniaturization has enabled small SMAactuators that are applicable in active endoscopes with allround bending and in actuators for kidney or heart pumps. The main risks using NiTi are the insecure fatigue life and possible cytotoxicity.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

109-118

Citation:

Online since:

October 2006

Export:

Price:

[1] S. Miyazaki, Medical and dental applications of shape memory alloys, In Shape Memory Materials Eds. K. Otsuka, C.M. Wayman, Cambridge University Press, 1998, pp.267-281.

Google Scholar

[2] N.B. Morgan: Mat. Sci. Eng. A 378 (2004), p.16.

Google Scholar

[3] M. Shahinpoor: Electrochimica Acta 48 (2003), p.2343.

Google Scholar

[4] S. A. Thompson: Int. Endodontic J. 33 (2000), p.297.

Google Scholar

[5] L.G. Machado, M.A. Savi: Brazilian J. Med. Biol. Res. 36 (2003), p.683.

Google Scholar

[6] S. Kujala, J. Tuukkanen, T. Jämsä, A. Danilova, A. Pramila, J. Ryhänen: J. Mat. Sci: Mat. Med. 13 (2002), p.1157.

DOI: 10.1023/a:1021194005533

Google Scholar

[7] R. Matsui, H. Tobushi, Y. Furuichi and H. Horikawa: Trans. ASME 126 (2004), p.384.

Google Scholar

[8] B. Kim, S. Lee, J. H. Park and J. -O. Park: IEEE/ASME Trans. Mechatr. 10 (2005), p.77.

Google Scholar

[9] Y.P. Kathuria, Mat. Sci. Eng. A 417 (2006), p.40.

Google Scholar

[10] H. Fischer, B. Vogel, G. Fehling: ICOMAT'05, to be published in Mat. Sci. Eng. A (2006).

Google Scholar

[11] L.L. Stepan, D. S. Levi, G.P. Carman: J. Biomed. Eng. 127 (2005), p.915.

Google Scholar

[12] W. Xu, T. G. Frank, and A Cuschieri, Development of a shape memory alloy multiple-point injector for chemotherapy, Proc. IMechE. Vol. 219 Part H: J. Engineering in Medicine, H01504 © IMechE 2005, pp.213-217.

DOI: 10.1243/095441105x9354

Google Scholar

[13] L. Petrini, F. Migliavacca, P. Massarotti, S. Schievano, G. Dubini, F. Auricchio, J. Biomech. Eng. 127 (2005), p.716.

DOI: 10.1115/1.1934203

Google Scholar

[14] C. Song, T. Frank, A. Cuschieri, J. Biomech. Eng. 127 (2005), p.351.

Google Scholar

[15] V.E. Gunther, Porous nickel-titanium alloy article, United States Patent 5, 986, 169, November 16, (1999).

Google Scholar

[16] V.I. Itin, V.E. Gunther, S.A. Shabalovskaya and R.L.C. Sachdeva: Mat. Char. 32 (1994), p.79.

Google Scholar

[17] O. Söderberg, Y. Ge, A. Sozinov, S. -P. Hannula, V.K. Lindroos, Giant Magnetostrictive Materials, In: Buschow J (ed. ) Handbook of Magnetic Materials, Vol. 16, 2006, Elsevier Science, Amsterdam. Pp. 1-39.

DOI: 10.1016/s1567-2719(05)16001-6

Google Scholar

[18] X. W. Liu, O. Söderberg, Y. Ge, A. Sozinov, V. K. Lindroos, Mat. Sci. Forum 394-395 (2002) 565-568.

DOI: 10.4028/www.scientific.net/msf.394-395.565

Google Scholar

[19] X. W. Liu, O. Söderberg, Y. Ge, N. Lanska , K. Ullakko, V. K. Lindroos, J. Phys. IV Proc. (2003) 935-938.

Google Scholar

[20] L'H. Yahia, A. Manceur, P. Chaffraix, Bio-Med. Mat. Eng. 16 (2006) 101-118.

Google Scholar

[21] Y. -H. Li, G. -B. Rao, L. -J. Rong and Y. -Y. Li: Mat. Lett. 57 (2002), p.448.

Google Scholar

[22] J. Ryhänen, E. Niemi, W. Serlo, E. Niemelä, P. Sandvik, H. Pernu and T. Salo: J. Biomed. Mater. Res. 35 (1997), p.451.

Google Scholar

[23] B.G. Chen, C.H. Liang, D.J. Fu and D.M. Ren: Contraception 72 (2005), p.221.

Google Scholar

[24] H.Y. Kim, Y. Ohmatsu, J.I. Kim, H. Hosoda and S. Miyazaki: Mat. Trans. 45 (2004), p.1090.

Google Scholar

[25] K. Yamauchi, Y. Sutou, T. Takagi, T. Maeshima and M. Nishida: ICOMAT'05, to be published in Mat. Sci. Eng. A (2006).

Google Scholar

[26] M. Niinomi: Sci. Techn. Adv. Mat. 4 (2003), p.445.

Google Scholar

[27] H.Y. Kim, Y. Ohmatsu, J.I. Kim, H. Hosoda and S. Miyazaki: Mat. Trans. 45 (2004) 1090.

Google Scholar

[28] V. Muhonen, R. Heikkinen, A. Danilov, T. Jämsä, J. Ilvesaro, J. Tuukkanen: J. Biom. Mat. Res. Part A, 75A (2005), p.681.

DOI: 10.1002/jbm.a.30477

Google Scholar

[29] J. Ryhänen, M. Kallioinen, J. Tuukkanen, P. Lehenkari, J. Junila, E. Niemela, P. Sandvik and W. Serlo: J. Biomed. Mater. Res. 41 (1998), p.481.

DOI: 10.1016/s0142-9612(99)00032-0

Google Scholar

[30] L.S. Castleman, S.M. Motzkin, F.P. Alicandri and V.L. Bonawit: J. Biomed. Mater. Res. 10 (1976), p.695.

Google Scholar

[31] J. Ryhänen, M. Kallioinen, J. Tuukkanen, Medical Applications for Shape-Memory Alloys (SMA), Professional Engineering Publishing Ltd., UK, 1999, p.53.

Google Scholar

[32] B. Thierry, M. Tabrizian, C. Trepanier, O. Savadogo and L'H. Yahia: J. Biomed. Mater. Res. 51 (2000), p.685.

DOI: 10.1002/1097-4636(20000915)51:4<685::aid-jbm17>3.0.co;2-s

Google Scholar

[33] G. Riepe, C. Heintz, L. Birken, E. Kaiser, N. Chakfé, M. Morlock, G. Delling, H. Imig, in: Proceedings of the Third International Conference on Shape Memory and Superelastic Technologies, Pacific Grove, California, USA, 2000, p.279.

Google Scholar

[34] D. Starosvesky and I. Gotman: Surf. Coat. Technol. 148 (2001), p.268.

Google Scholar

[35] H.C. Lin, H.M. Liao, J.L. He, K.M. Lin, K.C. Chen, Surf. Coat. Technol. 92 (1997), p.178.

Google Scholar

[36] S.A. Shabalovskaya: Bio-Med. Eng. 12 (2002), p.69.

Google Scholar

[37] A.W. Hassel: Min. Invas. Ther. & Allied Technol. 13 (2004), p.240.

Google Scholar

[38] Y.Q. Fu, H.J. Du and S. Zhang: Surf. Coat. Technol. 167 (2003), p.129.

Google Scholar

[39] H. Pelletier, D. Muller, P. Mille and J.J. Grob: Surf. Coat. Technol. 158 -159 (2002), p.301.

Google Scholar

[40] G. Tepe, J. Schmehl, H.P. Wendel, S. Schaffner, S. Heller, M. Gianotti, C.D. Claussen, S.H. Duda: Biomat. 27 (2006), p.643.

DOI: 10.1016/j.biomaterials.2005.06.004

Google Scholar

[41] M.F. Chen, X.J. Yang, R.X. Hu, Z.D. Cui and H.C. Man: Mat. Sci. Eng. C 24 (2004), p.497.

Google Scholar

[42] Y. -H. Li, G. -B. Rao, L. -J. Rong and Y. -Y. Li: Mat. Lett. 57 (2002), p.448.

Google Scholar

[43] C. Lin, H.M. Liao, J.L. He, K.C. Chen, K.M. Lin: Metall. Mater. Trans. A28 (1997), p.1871.

Google Scholar

[44] M. Assad, A. Chernyshov, M.A. Leroux, C. -H. Rivard: Bio-Med. Mat. Eng. 12 (2002), p.339.

Google Scholar

[45] G. Ryan, A. Pandit, D. Panagiotis Apatsidis: Biomat. 27 (2006), p.2651.

Google Scholar

[46] D.J. Wever, A.G. Veldhuizen, J. de Vries, H.J. Busscher, D.R.A. Uges and J.R. van Horn: Biomat. 19 (1998), p.761.

DOI: 10.1016/s0142-9612(97)00210-x

Google Scholar

[47] Z.D. Cui, H.C. Man and X.J. Yang: Surf. Coat. Technol. 192 (2005), p.347.

Google Scholar

[48] M. Niinomi, T. Hanawa, T. Narushima: JOM 57 (2005), p.18.

Google Scholar

[49] T. Duerig, A. Pelton, D. Stöckel: Mater. Sci. Eng. A 273-275 (1999), p.149.

Google Scholar

[50] R. Matsui, H. Tobushi, Y. Furuichi, H. Horikawa: Trans. ASME 126 (2004), p.384.

Google Scholar

[51] N.B. Morgan, J. Painter, A. Moffat, in: Proceedings of the Fourth International Conference on Shape Memory and Superelastic Technologies, Pacific Grove, California, USA, (2003).

Google Scholar

[52] N.B. Morgan, C.M. Friend: Mater. Sci. Eng. A 273-275 (1999), p.664.

Google Scholar

[53] N.B. Morgan, C.M. Friend, in: Proceedings of the Fifth European Symposium on Martensitic transformations and Shape Memory Alloys, Como, Italy, 2000, p.325.

Google Scholar

[54] A.R. Pelton, J. DiCello, S. Miyazaki, in: Proceedings of the Third International Conference on Shape Memory and Superelastic Technologies, Pacific Grove, California, USA, 2000, p.361.

Google Scholar

[55] N.B. Morgan, C.M. Friend: J. Phys. IV France 112 (2003), p.815.

Google Scholar

[56] S. Miyazaki, K. Mizukoshi, T. Ueki, T. Sakuma, Y. Liu: Mater. Sci. Eng. A 273-275 (1999), p.658.

Google Scholar

[57] A. Heckmann, E. Hornbogen, in: Proceedings of the International Conference on Shape Memory and Superelastic Technologies and Shape Memory Materials, Kunming, China, 2002, p.325.

Google Scholar

[58] G.F. Andreasen, T.B. Hilleman: J. American Dental Association 82 (1971) 1373-5.

Google Scholar

[59] R.P. Kusy: Angle Orthodontist 3 (1997), p.197.

Google Scholar

[60] H. Kanetaka, Y. Shimizu, H. Hosoda, R. Tomizuka, A. Suzuki, S. Miyazaki, K. Igarashi: Int. Congr. Ser. 1284 (2005), p.310.

Google Scholar

[61] S. Kobayashi, Y. Ohgoe, K. Ozeki, K. Sato, T. Sumiya, K.K. Hirakuri, H. Aoki: Diamond & Rel. Mat. 14 (2005), p.1094.

DOI: 10.1016/j.diamond.2004.11.036

Google Scholar

[62] L-H Huang, J.L. Shotwell, H-L Wang: Am. J. Orthodontics and Dentofacial Orthopedics 127 (2005), p.713.

Google Scholar

[63] R. Sachdeva, S. Fukuyo, K. Suzuki, Y. Oshida, S. Miyazaki: Mat. Sci. Forum 56-8 (1990), p.693.

Google Scholar

[64] A.M. Salam, J.A. Suwaidi, D.R. Holmes: Curr. Probl. Cardiol. 31 (2006), p.8.

Google Scholar

[65] PillCam [Online]. Available: http: /www. givenimaging. com.

Google Scholar

[66] Norika 3 [Online]. Available: http: /www. rfnorika. com.

Google Scholar

[67] S. Kujala, J. Ryhänen, T. Jämsä, A. Danilov, J. Saaranen, A. Pramila, J. Tuukkanen: Biomat. 23 (2002), p.2535.

DOI: 10.1016/s0142-9612(01)00388-x

Google Scholar

[68] S. Kujala, J. Ryhänen, A. Danilov, J. Tuukkanen: Biomat. 24 (2003), p.4691.

Google Scholar

[69] Jpn. Technol. Highlights (USA), 6 (1995), p.4.

Google Scholar