XRD and FTIR Studies of Nanocrystalline Cellulose from Water Hyacinth (Eichornia crassipes) Fiber

Article Preview

Abstract:

The isolation and characterization of nanocrystalline cellulose (NCC) from water hyacinth (WH) fibers were carried out. There are two treatments to obtain NCC from WH fibers by chemical and mechanical treatments. The chemical treatment involved alkalization with NaOH 25% in a highly-pressured tube, acid hydrolysis with 5M HCl, and bleaching with (NaClO2:CH3COOH) in ratio 5:2. The mechanical treatment was performed by using ultrasonic homogenizing at 12000 Rpm for 2 h. The morphological surface was observed by Transmission Electron Microscopy (TEM). TEM reported that the size of NCC was 10–40 nm. Crystallinity index and functional group analysis of the NCC WH fibers were also examined using X-Ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FTIR) techniques. XRD reported that the crystallinity index increased significantly after chemical and mechanical treatment due to the presents of crystalline area in the WH fibers. The crystallinity index of raw fiber, digester, bleaching, and ultrasonic homogenizing were 7%, 68%, 69%, and 73% respectively. The content cellulose of final product was 68% as measured by the chemical composition test. Meanwhile, FTIR reported that WH fibers after being given chemical treatment lead the functional group change due to removal hemicellulose and lignin. The result of XRD and FTIR were indicated that the sample of NCC WH fibers presents the structure of cellulose crystal type I.

You might also be interested in these eBooks

Info:

Pages:

9-16

Citation:

Online since:

August 2017

Export:

Price:

* - Corresponding Author

[1] A. Alemdar and M. Sain, Isolation and characterization of nanofibers from agricultural residues – Wheat straw and soy hulls, vol. 99, p.1664–1671, (2008).

DOI: 10.1016/j.biortech.2007.04.029

Google Scholar

[2] J. I. Mora, Extraction of cellulose and preparation of nanocellulose from sisal fibers, p.149–159, (2008).

Google Scholar

[3] J. Zhang, H. Song, L. Lin, J. Zhuang, C. Pang, and S. Liu, Microfibrillated cellulose from bamboo pulp and its properties, Biomass and Bioenergy, vol. 39, p.78–83, (2010).

DOI: 10.1016/j.biombioe.2010.06.013

Google Scholar

[4] X. Xu, F. Liu, L. Jiang, J. Y. Zhu, D. Haagenson, and D. P. Wiesenborn, Cellulose Nanocrystals vs. Cellulose Nano fibrils: A Comparative Study on Their Microstructures and Effects as Polymer Reinforcing Agents, (2013).

DOI: 10.1021/am302624t

Google Scholar

[5] F. Fahma, S. Iwamoto, N. Hori, T. Iwata, and A. Takemura, Isolation, preparation, and characterization of nanofibers from oil palm empty-fruit-bunch (OPEFB), Cellulose, vol. 17, no. 5, p.977–985, (2010).

DOI: 10.1007/s10570-010-9436-4

Google Scholar

[6] S. Park, J. O. Baker, M. E. Himmel, P. A. Parilla, and D. K. Johnson, Cellulose crystallinity index : measurement techniques and their impact on interpreting cellulase performance, p.1–10, (2010).

DOI: 10.1186/1754-6834-3-10

Google Scholar

[7] H. Abral, D. Kadriadi, A. Rodianus, P. Mastariyanto, Ilhamdi, S. Arief, S. M. Sapuan, and M. R. Ishak, Mechanical properties of water hyacinth fibers - polyester composites before and after immersion in water, Mater. Des., vol. 58, p.125–129, (2014).

DOI: 10.1016/j.matdes.2014.01.043

Google Scholar

[8] A. F. Abdel-Fattah and M. A. Abdel-Naby, Pretreatment and enzymic saccharification of water hyacinth cellulose, Carbohydr. Polym., vol. 87, no. 3, p.2109–2113, (2012).

DOI: 10.1016/j.carbpol.2011.10.033

Google Scholar

[9] M. Thiripura Sundari and A. Ramesh, Isolation and characterization of cellulose nanofibers from the aquatic weed water hyacinth - Eichhornia crassipes, Carbohydr. Polym., vol. 87, no. 2, p.1701–1705, (2012).

DOI: 10.1016/j.carbpol.2011.09.076

Google Scholar

[10] J. Li, X. Wei, Q. Wang, J. Chen, G. Chang, L. Kong, and J. Su, Homogeneous isolation of nanocellulose from sugarcane bagasse by high pressure homogenization, Carbohydr. Polym., vol. 90, no. 4, p.1609–1613, (2012).

DOI: 10.1016/j.carbpol.2012.07.038

Google Scholar

[11] J. C. C. S, N. George, and S. K. Narayanankutty, Isolation and characterization of cellulose nanofibrils from arecanut husk fibre, Carbohydr. Polym., vol. 142, p.158–166, (2016).

DOI: 10.1016/j.carbpol.2016.01.015

Google Scholar

[12] M. Janoobi, J. Harun, A. Shakeri, M. Misra, and K. Oksman, Chemical composition, crystallinity, and thermal degradation of bleached and unbleached kenaf bast, vol. 4, p.626–639, (2009).

Google Scholar

[13] R. Avolio, I. Bonadies, D. Capitani, M. E. Errico, G. Gentile, and M. Avella, A multitechnique approach to assess the effect of ball milling on cellulose, Carbohydr. Polym., vol. 87, no. 1, p.265–273, (2012).

DOI: 10.1016/j.carbpol.2011.07.047

Google Scholar

[14] M. K. Nacos, P. Katapodis, C. Pappas, D. Daferera, and P. A. Tarantilis, Kenaf xylan – A source of biologically active acidic oligosaccharides, vol. 66, p.126–134, (2006).

DOI: 10.1016/j.carbpol.2006.02.032

Google Scholar

[15] G. Velazquez and M. O. Mart, Identification of bound water through infrared spectroscopy in methylcellulose, vol. 59, p.79–84, (2003).

Google Scholar

[16] E. Abraham, B. Deepa, L. A. Pothen, J. Cintil, S. Thomas, M. J. John, R. Anandjiwala, and S. S. Narine, Environmental friendly method for the extraction of coir fibre and isolation of nanofibre, Carbohydr. Polym., vol. 92, no. 2, p.1477–1483, (2013).

DOI: 10.1016/j.carbpol.2012.10.056

Google Scholar

[17] N. Reddy and Y. Yang, Structure and properties of high quality natural cellulose fibers from cornstalks, vol. 46, p.5494–5500, (2005).

DOI: 10.1016/j.polymer.2005.04.073

Google Scholar

[18] P. Mis and L. M. Proniewicz, Cellulose oxidative and hydrolytic degradation : In situ FTIR approach, vol. 88, p.512–520, (2005).

DOI: 10.1016/j.polymdegradstab.2004.12.012

Google Scholar

[19] N. A. Ibrahim, N. Azraaie, N. Aimi, M. Zainul, N. Amira, M. Razali, F. A. Aziz, and S. Zakaria, XRD and FTIR Studies of Natural Cellulose Isolated from Pineapple ( Ananas comosus ) Leaf Fibres, vol. 1087, p.197–201, (2015).

DOI: 10.4028/www.scientific.net/amr.1087.197

Google Scholar

[20] N. A. Rosli, I. Ahmad, and I. Abdullah, Isolation and Characterization of Cellulose Nanocrystals from Agave angustifolia Fibre, vol. 8, p.1893–1908, (2013).

DOI: 10.15376/biores.8.2.1893-1908

Google Scholar

[21] H. Lu, Y. Gui, L. Zheng, and X. Liu, Morphological, crystalline, thermal and physicochemical properties of cellulose nanocrystals obtained from sweet potato residue, FRIN, vol. 50, no. 1, p.121–128, (2013).

DOI: 10.1016/j.foodres.2012.10.013

Google Scholar