Optical and Wetting Properties of Femtosecond Laser Nanostructured Materials

Article Preview

Abstract:

We modify optical and wetting properties of solids using a femtosecond laser surface nanostructuring technique. We demonstrate that this technique allows creating black and color metals. Absorptance of black titanium created in our study is measured to be about 90-97% over a broad wavelength range from the ultraviolet to infrared. Moreover, our technique can be also used for modifying wetting properties of solids. Here, we create a novel surface structure that transforms regular silicon to superwicking. This surface structure makes water run vertically uphill in a gravity defying way. Our study of the liquid motion shows that the extraordinarily strong self-propelling motion of water is due to a capillary effect from the surface structures we created.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

57-67

Citation:

Online since:

April 2011

Export:

Price:

[1] D.B. Geohegan, A.A. Puretzky, G. Duscher, S.J. Pennycook, Time-resolved imaging of gas phase nanoparticle synthesis by laser ablation, Appl. Phys. Lett. 72 (1998) 2987-2989.

DOI: 10.1063/1.121516

Google Scholar

[2] D. Scuderi, O. Albert, D. Moreau, P. P. Pronko, J. Etchepare, Interaction of a laser- produce plume with a second time delayed femtosecond pulse, Appl. Phys. Lett. 86 (2005) 071502.

DOI: 10.1063/1.1864242

Google Scholar

[3] S. Eliezer, N. Eliaz, E. Grossman, D. Fisher, I. Gouzman, Z. Henis, S. Pecker, Y. Horovitz, M. Fraenkel, S. Maman, Y. Lereah, Synthesis of nanoparticles with femtosecond laser pulses, Phys. Rev. B 69 (2004) 144119.

DOI: 10.1103/physrevb.69.144119

Google Scholar

[4] G. Ausanio, A. C. Barone, V. Iannotti, L. Lanotte, S. Amoruso, R. Bruzzese, M. Vitiello, Magnetic and morphological characteristics of nickel nanoparticles films produced by femtosecond laser ablation, Appl. Phys. Lett. 85 (2004) 4103-4105.

DOI: 10.1063/1.1815065

Google Scholar

[5] A. Pereira, A. Cros, P. Delaporte, S. Georgiou, A. Manousaki, W. Marine, M. Sentis, Surface nanostructuring of metals by laser irradiation: effects of pulse duration, wavelength and gas atmosphere, Appl. Phys. A Vol. 79 (2004) 1433-1437.

DOI: 10.1007/s00339-004-2804-x

Google Scholar

[6] A.Y. Vorobyev, C. Guo, Enhanced absorptance of gold following multipulse femtosecond laser ablation, Phys. Rev. B 72 (2005) 195422.

DOI: 10.1103/physrevb.72.195422

Google Scholar

[7] A.Y. Vorobyev, C. Guo, Femtosecond laser nanostructuring of metals, Opt. Express 14 (2006) 2164-2169.

DOI: 10.1364/oe.14.002164

Google Scholar

[8] R. N. Wenzel, Surface roughness and contact angle, J. Phys. Colloid Chem. 53 (1949) 1466-1467.

DOI: 10.1021/j150474a015

Google Scholar

[9] A. B. D. Cassie, S. Baxter, Wettability of porous surfaces, Trans. Faraday Soc. Vol. 40 (1944) 546-551.

DOI: 10.1039/tf9444000546

Google Scholar

[10] J. Bico, C. Tordeux, D. Quere, Rough wetting, Europhys. Lett. Vol. 55 (2001) 214- 220.

DOI: 10.1209/epl/i2001-00402-x

Google Scholar

[11] G. McHale, N. J. Shirtcliffe, S. Aqil, C. C. Perry, M. I. Newton, Topography driven spreading, Phys. Rev. Lett. 93 (2004) 036102.

DOI: 10.1103/physrevlett.93.036102

Google Scholar

[12] K. M. Hay, M. I. Dragila, J. Liburdy, Theoretical model for the wetting of a rough surface, J. Colloid Inteface Sci. 325 (2008) 472-477.

DOI: 10.1016/j.jcis.2008.06.004

Google Scholar

[13] A.Y. Vorobyev, C. Guo, Metal pumps liquid uphill, Appl. Phys. Lett. 94 (2009) 224102.

DOI: 10.1063/1.3117237

Google Scholar

[14] P. Gravesen, J. Branebjerg, O. S. Jensen, Microfluidics – a review, J. Micromech. Microeng. 3 (1993) 168-182.

DOI: 10.1088/0960-1317/3/4/002

Google Scholar

[15] G.M. Whitesides, The origins and the future of microfluidics, Nature 442 (2006) 368-373.

Google Scholar

[16] P. Abgrall, A. M. Gue, Lab-on-chip technologies: making a microfluidic network and coupling it into a complete microsystem – a review, J. Micromech. Microeng. 17 (2007) R15-R49.

DOI: 10.1088/0960-1317/17/5/r01

Google Scholar

[17] K.F. Jensen, Silicon-based microchemical systems: characteristics and applications, MRS Bulletin 31 (2006) 101-107.

DOI: 10.1557/mrs2006.23

Google Scholar

[18] D. Erickson, D. Li, Integrated microfluidic devices, Anal. Chim. Acta 507 (2004) 11-26.

Google Scholar

[19] S.I. Anisimov, B.S. Luk'yanchuk, Selected problems of laser ablation theory Phys. Uspekhi 45 (2002) 293-324.

DOI: 10.1070/pu2002v045n03abeh000966

Google Scholar

[20] J. Koch, F. Korte, T. Bauer, C. Fallnich, A. Ostendorf, B.N. Chichkov, Nanotexturing of gold films by femtosecond laser-induced melt dynamics, Appl. Phys. A 81 (2005) 325- 328.

DOI: 10.1007/s00339-005-3212-6

Google Scholar

[21] T.Y. Hwang, A.Y. Vorobyev, C. Guo, Ultrafast dynamics of femtosecond laser-induced nanostructure formation on metals, Appl. Phys. Lett. 95 (2009) 123111.

DOI: 10.1063/1.3222937

Google Scholar

[22] N.A. Inogamov, V.V. Zhakhovskii, S.I. Ashitkov, Yu.V. Petrov, M.B. Agranat, S.I. Anisimov, K. Nishihara, V.E. Fortov, Nanospallation induced by an ultrashort laser pulse, JETP 107 (2008) 1-19.

DOI: 10.1134/s1063776108070017

Google Scholar

[23] V.V. Zhakhovskii, N. A. Inogamov, K. Nishihara, New mechanism of the formation of the nanorelief on a surface irradiated by a femtosecond laser pulse, JETP Lett. 87 (2008) 423-427.

DOI: 10.1134/s0021364008080079

Google Scholar

[24] F. Ghmari, T. Ghbara, M. Laroche, R. Carminati, J. -J. Greffet, Influence of microroughness on emissivity, J. Appl. Phys. 96 (2004) 2656-2664.

DOI: 10.1063/1.1776634

Google Scholar

[25] U. Kreibig, M. Vollmer, Optical Properties of Metal Clusters, Springer, Berlin, (1995).

Google Scholar

[26] J.Z. Zhang, C. Noguez, Plasmonic Optical Properties and Applications of Metal Nanostructures, Plasmonics 3 (2008) 127-150.

DOI: 10.1007/s11468-008-9066-y

Google Scholar

[27] I. H. H. Zabel, D. Stroud, Metal clusters and model rocks: electromagnetic properties of conducting fractal aggregates, Phys. Rev. B 46 (1992) 8132-8138.

DOI: 10.1103/physrevb.46.8132

Google Scholar

[28] S. Lal, S. Link, N. J. Halas, Nano-optics from sensing to waveguiding, Nature Photonics 1 (2007) 641-648.

DOI: 10.1038/nphoton.2007.223

Google Scholar

[29] E. W. Washburn, The dynamics of capillary flow, Phys Rev. 17 (1921) 273-279.

Google Scholar

[30] L. R. Fisher, P. D. Lark, An experimental study of the Washburn equation for liquid flow in very fine capillaries, J. Colloid Inteface Sci. 69 (1979) 486-492.

DOI: 10.1016/0021-9797(79)90138-3

Google Scholar

[31] N. R. Tas, J. Haneveld, H. V. Jansen, M. Elwenspoek, A. van den Berg, Capillary filling speed of water in nanochannels, Appl. Phys. Lett. 85 (2004) 3274-3276.

DOI: 10.1063/1.1804602

Google Scholar

[32] M. Stange, M. E. Dreyer, H. J. Rath, Capillary driven flow in circular cylindrical tubes, Phys. Fluids 15 (2003) 2587-2601.

DOI: 10.1063/1.1596913

Google Scholar

[33] L. A. Romero, F. G. Yost, Flow in an open channel capillary, J. Fluid Mech. 322 (1996) 109-129.

DOI: 10.1017/s0022112096002728

Google Scholar

[34] J. A. Mann, L. Romero, R. R. Rye, F. G. Yost, Flow of simple liquids down narrow V- grooves, Phys. Rev. E 52 (1995) 3967-3972.

DOI: 10.1103/physreve.52.3967

Google Scholar

[35] R. R. Rye, J. A. Mann, F. G. Yost, The flow of liquids in surface grooves, Langmuir 12 (1996) 555-565.

DOI: 10.1021/la9500989

Google Scholar

[36] L. Courbin, E. Deniel, E. Dressaire, M. Roper, A. Ajdari, H. A. Stone, Imbibition by polygonal spreading on microdecorated surfaces, Nature Materials 6 (2007) 661-664.

DOI: 10.1038/nmat1978

Google Scholar

[37] S. Gerdes, A. M. Cazabat, G. Strom, The spreading of silicone oil droplets on a surface with parallel V-shaped grooves, Langmuir 13 (1997) 7258-7264.

DOI: 10.1021/la970139w

Google Scholar

[38] A. D. Dussaud, P. M. Adler, A. Lips, Liquid transport in the networked microchannels of the skin surface, Langmuir 19 (2003) 7341-7345.

DOI: 10.1021/la034235a

Google Scholar