Separation of Sulphuric Acid from an Acid Suspension of Cellulose Nanocrystals by Manual Shaking

Article Preview

Abstract:

In this paper, the separation of sulphuric acid from a suspension of cellulose nanocrystal by manual shaking is described. Cellulose nanocrystals are prepared from acid hydrolysis of cotton using 64 wt% sulphuric acid at ca. 45 °C for 45 minutes. After the hydrolysis was complete, water was added to dilute the mixture to a resulting concentration of 30 wt% of the acid. This mixture was shaken rigorously in a closed container and after 48 hours, separation occurs such that cellulose nanocrystals float, with the bubbles introduced by the shaking, to give clear acid solution at the bottom. This shaking-floating process is repeatable for several cycles after the acid was removed from the bottom and more water was added. Using this simple process, the total acid recovery of > 90% has been achieved, and the concentration of all the acid recovered combined was 17.5 wt%. This work demonstrates a method that allows energy efficient and up-scalable separation of cellulose nanocrystals from the acidic suspension from which it was extracted.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

58-72

Citation:

Online since:

January 2016

Export:

Price:

[1] M. Samir; F. Alloin; A. Dufresne, Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field, Biomacromolecules, 6, (2005), 612-626.

DOI: 10.1021/bm0493685

Google Scholar

[2] S. J. Eichhorn; A. Dufresne; M. Aranguren; N. E. Marcovich; J. R. Capadona; S. J. Rowan; C. Weder; W. Thielemans; M. Roman; S. Renneckar; W. Gindl; S. Veigel; J. Keckes; H. Yano; K. Abe; M. Nogi; A. N. Nakagaito; A. Mangalam; J. Simonsen; A. S. Benight; A. Bismarck; L. A. Berglund; T. Peijs, Review: current international research into cellulose nanofibres and nanocomposites, J. Mater. Sci., 45, (2010).

DOI: 10.1007/s10853-009-3874-0

Google Scholar

[3] S. Kalia; A. Dufresne; B. M. Cherian; B. S. Kaith; L. Averous; J. Njuguna; E. Nassiopoulos, Cellulose-based bio- and nanocomposites: a review, Int. J. Polym. Sci., (2011).

DOI: 10.1155/2011/837875

Google Scholar

[4] A. B. Elmabrouk; T. Wim; A. Dufresne; S. Boufi, Preparation of poly(styrene-co-hexylacrylate)/cellulose whiskers nanocomposites via miniemulsion polymerization, J. Appl. Polym. Sci., 114, (2009), 2946-2955.

DOI: 10.1002/app.30886

Google Scholar

[5] M. Labet; W. Thielemans, Improving the reproducibility of chemical reactions on the surface of cellulose nanocrystals: ROP of ε-caprolactone as a case study, Cellulose, 18, (2011), 607-617.

DOI: 10.1007/s10570-011-9527-x

Google Scholar

[6] N. L. G. de Rodriguez; W. Thielemans; A. Dufresne, Sisal cellulose whiskers reinforced polyvinyl acetate nanocomposites, Cellulose, 13, (2006), 261-270.

DOI: 10.1007/s10570-005-9039-7

Google Scholar

[7] G. Morandi; L. Heath; W. Thielemans, Cellulose Nanocrystals Grafted with Polystyrene Chains through Surface-Initiated Atom Transfer Radical Polymerization (SI-ATRP), Langmuir, 25, (2009), 8280-8286.

DOI: 10.1021/la900452a

Google Scholar

[8] A. P. Mathew; W. Thielemans; A. Dufresne, Mechanical properties of nanocomposites from sorbitol plasticized starch and tunicin whiskers, J. Appl. Polym. Sci., 109, (2008), 4065-4074.

DOI: 10.1002/app.28623

Google Scholar

[9] J. R. Capadona; K. Shanmuganathan; S. Triftschuh; S. Seidel; S. J. Rowan; C. Weder, Polymer nanocomposites with nanowhiskers isolated from microcrystalline cellulose, Biomacromolecules, 10, (2009), 712-716.

DOI: 10.1021/bm8010903

Google Scholar

[10] Q. J. Wu; M. Henriksson; X. Liu; L. A. Berglund, A high strength nanocomposite based on microcrystalline cellulose and polyurethane, Biomacromolecules, 8, (2007), 3687-3692.

DOI: 10.1021/bm701061t

Google Scholar

[11] L. Heath; W. Thielemans, Cellulose nanowhisker aerogels, Green Chem., 12, (2010), 1448-1453.

DOI: 10.1039/c0gc00035c

Google Scholar

[12] Y. Habibi; A. L. Goffin; N. Schiltz; E. Duquesne; P. Dubois; A. Dufresne, Bionanocomposites based on poly(epsilon-caprolactone)-grafted cellulose nanocrystals by ring-opening polymerization, J. Mater. Chem., 18, (2008), 5002-5010.

DOI: 10.1039/b809212e

Google Scholar

[13] D. Klemm; B. Heublein; H. -P. Fink; A. Bohn, Cellulose: fascinating biopolymer and sustainable raw material, Angew. Chem., Int. Ed., 44, (2005), 3358-3393.

DOI: 10.1002/anie.200460587

Google Scholar

[14] M. J. Bonne; K. J. Edler; J. G. Buchanan; D. Wolverson; E. Psillakis; M. Helton; W. Thielemans; F. Marken, Thin-film modified electrodes with reconstituted cellulose-PDDAC films for the accumulation and detection of triclosan, J. Phys. Chem. C, 112, (2008).

DOI: 10.1021/jp709783k

Google Scholar

[15] M. J. Bonne; E. Galbraith; T. D. James; M. J. Wasbrough; K. J. Edler; A. T. A. Jenkins; M. Helton; A. McKee; W. Thielemans; E. Psillakis; F. Marken, Boronic acid dendrimer receptor modified nanofibrillar cellulose membranes, J. Mater. Chem., 20, (2010).

DOI: 10.1039/b918308f

Google Scholar

[16] S. Eyley; W. Thielemans, Imidazolium grafted cellulose nanocrystals for ion exchange applications, Chem. Commun., 47, (2011), 4177-4179.

DOI: 10.1039/c0cc05359g

Google Scholar

[17] L. J. Nielsen; S. Eyley; W. Thielemans; J. W. Aylott, Dual fluorescent labelling of cellulose nanocrystals for pH sensing, Chem. Commun., 46, (2010), 8929-8931.

DOI: 10.1039/c0cc03470c

Google Scholar

[18] H. Fukuzumi; T. Saito; T. Wata; Y. Kumamoto; A. Isogai, Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation, Biomacromolecules, 10, (2009), 162-165.

DOI: 10.1021/bm801065u

Google Scholar

[19] S. Y. Liew; W. Thielemans; D. A. Walsh, Electrochemical capacitance of nanocomposite polypyrrole/cellulose films, J. Phys. Chem. C, 114, (2010), 17926-17933.

DOI: 10.1021/jp103698p

Google Scholar

[20] S. Y. Liew; D. A. Walsh; W. Thielemans, High total-electrode and mass-specific capacitance cellulose nanocrystal-polypyrrole nanocomposites for supercapacitors, Rsc Advances, 3, (2013), 9158-9162.

DOI: 10.1039/c3ra41168k

Google Scholar

[21] S. Beck-Candanedo; M. Roman; D. G. Gray, Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions, Biomacromolecules, 6, (2005), 1048-1054.

DOI: 10.1021/bm049300p

Google Scholar

[22] X. M. Dong; T. Kimura; J. F. Revol; D. G. Gray, Effects of ionic strength on the isotropic-chiral nematic phase transition of suspensions of cellulose crystallites, Langmuir, 12, (1996), 2076-(2082).

DOI: 10.1021/la950133b

Google Scholar

[23] D. Bondeson; A. Mathew; K. Oksman, Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis, Cellulose, 13, (2006), 171-180.

DOI: 10.1007/s10570-006-9061-4

Google Scholar

[24] S. Elazzouzi-Hafraoui; Y. Nishiyama; J. L. Putaux; L. Heux; F. Dubreuil; C. Rochas, The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose, Biomacromolecules, 9, (2008), 57-65.

DOI: 10.1021/bm700769p

Google Scholar

[25] R. Dash; Y. Li; A. J. Ragauskas, Cellulose nanowhisker foams by freeze casting, Carbohydr. Polym., 88, (2012), 789-792.

DOI: 10.1016/j.carbpol.2011.12.035

Google Scholar

[26] J. Vermant, When shape matters, Nature, 476, (2011), 286-287.

Google Scholar

[27] W. Thielemans; C. R. Warbey; D. A. Walsh, Permselective nanostructured membranes based on cellulose nanowhiskers, Green Chem., 11, (2009), 531-537.

DOI: 10.1039/b818056c

Google Scholar

[28] J. Pan; W. Hamad; S. K. Straus, Parameters affecting the chiral nematic phase of nanocrystalline cellulose films, Macromolecules, 43, (2010), 3851-3858.

DOI: 10.1021/ma902383k

Google Scholar

[29] I. Kalashnikova; H. Bizot; B. Cathala; I. Capron, New Pickering emulsions stabilized by bacterial cellulose nanocrystals, Langmuir, 27, (2011), 7471-7479.

DOI: 10.1021/la200971f

Google Scholar

[30] I. Kalashnikova; H. Bizot; B. Cathala; I. Capron, Modulation of cellulose nanocrystals amphiphilic properties to stabilize oil/water interface, Biomacromolecules, 13, (2012), 267-275.

DOI: 10.1021/bm201599j

Google Scholar

[31] K. Masschaele; J. Fransaer; J. Vermant, Direct visualization of yielding in model two-dimensional colloidal gels subjected to shear flow, Journal of Rheology, 53, (2009), 1437-1460.

DOI: 10.1122/1.3237154

Google Scholar

[32] J. F. Revol; H. Bradford; J. Giasson; R. H. Marchessault; D. G. Gray, Helicoidal self-ordering of cellulose microfibrils in aqueous suspension, Int. J. Biol. Macromol., 14, (1992), 170-172.

DOI: 10.1016/s0141-8130(05)80008-x

Google Scholar

[33] D. W. Green; R. H. Perry, Densities of aqueous inorganic solutions at 1 atm In Perry's Chemical Engineers' Handbook, Eighth Edition; McGraw Hill Professional, Access Engineering: (2008).

Google Scholar

[34] W. Y. Hamad; T. Q. Hu, Structure-process-yield interrelations in nanocrystalline cellulose extraction, Can. J. Chem. Eng., 88, (2010), 392-402.

Google Scholar

[35] M. Bercea; P. Navard, Shear dynamics of aqueous suspensions of cellulose whiskers, Macromolecules, 33, (2000), 6011-6016.

DOI: 10.1021/ma000417p

Google Scholar

[36] Y. Boluk; R. Lahiji; L. Zhao; M. T. McDermott, Suspension viscosities and shape parameter of cellulose nanocrystals (CNC), Colloids Surf., A, 377, (2011), 297-303.

DOI: 10.1016/j.colsurfa.2011.01.003

Google Scholar

[37] R. F. Probstein, Physicochemical Hydrodynamics An introduction Second Edition; John Wiley & Sons, Inc.: New Jersey, (2003).

Google Scholar