Influence of Stabilizer on the Microstructures and Photocatalytic Performance of ZnO Nanopowder Synthesized by Sol-Gel Method

Article Preview

Abstract:

Utilizing zinc acetate as precursor, and monoethanolamine (MEA), diethanolamine (DEA) and triethanolamine (TEA) as stabilizers, respectively, ZnO nanoparticles with uniformly distributed grains were synthesized by sol-gel method at different sintering temperatures. Analysis of the degradation of methyl orange by photocatalysis shows that utilizing MEA as the stabilizer and 550°C as the sintering temperature results in smaller grain size, greater surface-to-volume ratio, and a density of surface defects suitable for a photocatalyst. The greatest photocatalytic degradation of methyl orange was achieved under UV irradiation. Based on our microstructural analysis and photocatalysis, the microstructure of ZnO particles and, in turn, their photocatalytic effect are affected significantly by the stabilizer type and the sintering temperature.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

57-71

Citation:

Online since:

November 2017

Export:

Price:

* - Corresponding Author

[1] Z.H. Dong, X.Y. Lai, J. E. Halpert et al., Accurate control of multishelled ZnO hollow microspheres for dye-sensitized solar cells with high efficiency, Adv. Mater. 24 (2012) 1046-1049.

DOI: 10.1002/adma.201104626

Google Scholar

[2] Z.H. Fan, F.M. Meng, M. Zhang, et al. Solvothermal synthesis of hierarchical TiO2 nanostructures with tunable morphology and enhanced photocatalytic activity, Appl. Surf. Sci., 360(2016) 298-305.

DOI: 10.1016/j.apsusc.2015.11.021

Google Scholar

[3] Z. Fan, F. Meng, J. Gong, Growth mechanism and photocatalytic activity of chrysanthemum-like anatase TiO2 nanostructures, Ceram. Int., 42(2016) 6282-6287.

DOI: 10.1016/j.ceramint.2016.01.011

Google Scholar

[4] Z.H. Li, G. Li, Y. Du et al., Photovoltaic characteristics of ZnO nanoparticles, Chem. J. Chinese U. 33 (2012) 560-563.

Google Scholar

[5] C.J. Brinker, G.W. Scherer, Sol-gel science: the physics and chemistry of sol-gel processing, 1990 Academic Press 2.

Google Scholar

[6] G. Øye, W.R. Glomm, T Vralstad et al., Synthesis, functionalisation and characterisation of mesoporous materials and sol–gel glasses for applications in catalysis, adsorption and photonics, Adv. Colloid Interfac. 123-126 (2006) 17-32.

DOI: 10.1016/j.cis.2006.05.010

Google Scholar

[7] N. Carmona, E. Herrero, J. Llopis et al., Chemical sol-gel-based sensors for evaluation of environmental humidity, Sensor. Actuat. B-Chem. 126 (2007) 455-460.

DOI: 10.1016/j.snb.2007.03.030

Google Scholar

[8] H. Yuan, M. Xu, Q.Z. Huang. Effects of pH of the precursor sol on structural and optical properties of Cu-doped ZnO thin films, J. Alloy. Compd. 616 (2014) 401-407.

DOI: 10.1016/j.jallcom.2014.07.070

Google Scholar

[9] X. Li, Z. Zeng, S. Gao et al., Preparation and characteristics of sol-gel-coated calixarene fiber for solid-phase microextraction, J. Chromatogr. A, 1023 (2004) 15-25.

DOI: 10.1016/j.chroma.2003.09.042

Google Scholar

[10] M. Xu, H. Yuan, B. You et al., Structural, optical, and magnetic properties of (Co, Cu)-codoped ZnO films with different Co concentrations, J. Appl. Phys. 115 (2014) 093503.

DOI: 10.1063/1.4867399

Google Scholar

[11] Y.H. Lu, M. Xu, L.X. Xu et al., Enhanced ultraviolet photocatalytic activity of Ag/ZnO nanoparticles synthesized by modified polymer-network gel method, J. Nanopart. Res. 17 (2015) 1-15.

DOI: 10.1007/s11051-015-3150-y

Google Scholar

[12] H. Yuan, M. Xu, Q.Z. Huang, Effects of pH of the precursor sol on structural and optical properties of Cu-doped ZnO thin films, J. Alloys Compd. 616 (2014) 401-407.

DOI: 10.1016/j.jallcom.2014.07.070

Google Scholar

[13] H. Huang, M.W. Zhu, J. Gong et al., Effects of solvent, sol stabilizer and heat treat menton the micro structure of ZnO films prepared by sol-gel dip coating, Acta Metal. Sin. 43 (2007)1043-1047.

Google Scholar

[14] E.A. Meulenkamp, Synthesis and growth of ZnO nanoparticles, J. Phys. Chem. B 102 (1998) 5566-5572.

Google Scholar

[15] R. Kumar, G. Kumar, A. Umar, ZnO nano-mushrooms for photocatalytic degradation of methyl orange, Mater. Lett. 97 (2013) 100-103.

DOI: 10.1016/j.matlet.2013.01.044

Google Scholar

[16] M.W. Zhu, H. Huang, J. Gong et al., Effect of sol stabilizer on the density of sol-gel derived ZnO films, Chin. Surf. Eng. 20 (2007) 1-4.

Google Scholar

[17] F. Boudjouan, A. Chelouche, T. Touam et al., Effects of stabilizer ratio on photoluminescence properties of sol-gel ZnO nano-structured thin films, J. Lumin. 158 (2015) 32-37.

DOI: 10.1016/j.jlumin.2014.09.026

Google Scholar

[18] C.S. Lao, J. Liu, P. Gao et al., ZnO nanobelt/nanowire Schottky diodes formed by dielectrophoresis alignment across Au electrodes, Nano Lett. 6 (2006) 263-266.

DOI: 10.1021/nl052239p

Google Scholar

[19] R. Saravanan, N. Karthikeyan, V.K. Gupta et al., ZnO/Ag nanocomposite: an efficient catalyst for degradation studies of textile effluents under visible light, Mat. Sci. Eng. C-Mater. 33 (2013) 2235-2244.

DOI: 10.1016/j.msec.2013.01.046

Google Scholar

[20] L. Jing, Z. Xu, J. Shang et al., The preparation and characterization of ZnO ultrafine particles, Mat. Sci. Eng. A-Struct. 332 (2002) 356-361.

Google Scholar

[21] T. Ivanova, A. Harizanova, T. Koutzarova et al., Study of ZnO sol–gel films: Effect of annealing, Mater. Lett. 64 (2010) 1147-1149.

DOI: 10.1016/j.matlet.2010.02.033

Google Scholar

[22] Y. Zheng, C. Chen, Y. Zhan et al., Luminescence and photocatalytic activity of ZnO nanocrystals: correlation between structure and property, Inorg. Chem. 46 (2007) 6675-6682.

DOI: 10.1021/ic062394m

Google Scholar

[23] S. Mandal and S. Natarajan, Adsorption and catalytic degradation of organic dyes in water using ZnO/ZnxFe3−xO4 mixed oxides, J. Environ. Chem. Eng. 3 (2015) 1185-1193.

DOI: 10.1016/j.jece.2015.04.021

Google Scholar

[24] L. Znaidi, Sol–gel-deposited ZnO thin films: A review, Mat. Sci. Eng. B-Adv. 174 (2010) 18-30.

Google Scholar

[25] S. Chakrabarti, D. Ganguli, S. Chaudhuri. Substrate dependence of preferred orientation in sol–gel-derived zinc oxide films, Mater. Lett. 58 (2004) 3952-3957.

DOI: 10.1016/j.matlet.2004.09.002

Google Scholar

[26] M. Ohyama, H. Kozuka, T. Yoko et al., reparation of ZnO Films with Preferential Orientation by Sol-Gel Method, J. Ceram. Soc. Jpn. 104 (1996) 296-300.

DOI: 10.2109/jcersj.104.296

Google Scholar

[27] L. Znaidi, G.J.A. A, SIllia, S. Benyahia et al., Oriented ZnO thin films synthesis by sol–gel process for laser application, Thin Solid Films 428 (2003) 257-262.

DOI: 10.1016/s0040-6090(02)01219-1

Google Scholar

[28] P. Sagar, P.K. Shishodia, R.M. Mehra., nfluence of pH value on the quality of sol–gel derived ZnO films, Appl. Surf. Sci. 253 (2007) 5419-5424.

DOI: 10.1016/j.apsusc.2006.12.026

Google Scholar

[29] Q. P. Zhang, X. N. Xu, Y. T. Liu, et al. A feasible strategy to balance the crystallinity and specific surface area of metal oxide nanocrystals, Sci. Rep., 7 (2017) 46424.

Google Scholar

[30] F.M. Meng, X.P. Song, Z.Q. Sun. Photocatalytic activity of TiO2 thin films deposited by RF magnetron sputtering. Vacuum, 83 (2009) 1147-1151.

DOI: 10.1016/j.vacuum.2009.02.009

Google Scholar

[31] J. Xu, Y. Chang, Y. Zhang et al., Effect of silver ions on the structure of ZnO and photocatalytic performance of Ag/ZnO composites, Appl. Surf. Sci. 255 (2008) 1996-(1999).

DOI: 10.1016/j.apsusc.2008.06.130

Google Scholar

[32] F.M. Meng, Z.Q. Sun. Enhanced photocatalytic activity of silver nanoparticles modified TiO2 thin films prepared by RF magnetron sputtering, Mater. Chem. Phys., 118(2009) 349-353.

DOI: 10.1016/j.matchemphys.2009.07.068

Google Scholar

[33] M.Y. Guo, M.K. Fung, F. Fang et al., ZnO and TiO2 1D nanostructures for photocatalytic applications, J. Alloys Compd. 509(2011) 1328-1332.

DOI: 10.1016/j.jallcom.2010.10.028

Google Scholar

[34] A.C. Dodd, A.J. Mckinley, M. Saunders et al., Effect of Particle Size on the Photocatalytic Activity of Nanoparticulate Zinc Oxide, J. Nanopart. Res. 8 (2006) 43-51.

DOI: 10.1007/s11051-005-5131-z

Google Scholar

[35] L.G. Devi, S.G. Kumar, Exploring the critical dependence of adsorption of various dyes on the degradation rate using Ln3+-TiO2 surface under UV/solar light, Appl. Surf. Sci. 261(2012) 137-146.

DOI: 10.1016/j.apsusc.2012.07.121

Google Scholar

[36] S. Ekambaram, Y. Iikubo, A. Kudo, Combustion synthesis and photocatalytic properties of transition metal-incorporated ZnO, J. Alloys Compd. 433 (2007) 237-240.

DOI: 10.1016/j.jallcom.2006.06.045

Google Scholar

[37] A.H. Boonstra, C. Mutsaers, Adsorption of hydrogen peroxide on the surface of titanium dioxide, J. Phys. Chem. 79 (1975) 1940-(1943).

DOI: 10.1021/j100585a011

Google Scholar

[38] E. Pelizzetti, C. Minero, Mechanism of the photo-oxidative degradation of organic pollutants over TiO2 particles, Electrochim. Acta 38 (1993) 47-55.

DOI: 10.1016/0013-4686(93)80009-o

Google Scholar

[39] A. Akyol, H.C. Yatmaz, M. Bayramoglu, Photocatalytic decolorization of Remazol Red RR in aqueous ZnO suspensions, Appl. Catal. B- Environ. 54 (2004) 19-24.

DOI: 10.1016/j.apcatb.2004.05.021

Google Scholar

[40] R.W. Matthews, S.R. Mcevoy, A comparison of 254 nm and 350 nm excitation of TiO2 in simple photocatalytic reactors, J. Photoch. Photobio. A 66 (1992) -366.

DOI: 10.1016/1010-6030(92)80008-j

Google Scholar