Calcium Phosphate Ceramic Blasting on Titanium Surface Improve Bone Ingrowth

Article Preview

Abstract:

Surface roughness modulates the osseointegration of orthopaedic and dental titanium implants. High surface roughness is currently obtained by blasting of titanium implants with silica or aluminium abrasive particles. This process includes into the surface abrasive particles and may cause the release of cytotoxic silica or aluminium ions in the peri implant tissue. To overcome this drawback, we currently develop an innovative gridblasting process using Biphasic Calcium Phosphate (BCP) particles (RBBM Resorbable and Biocompatible Blast Media) to generate biocompatible roughened titanium surface. This work present the technique of blasting using RBBM particles to provide a roughened surface which does not release cytotoxic elements and (ii) to assess the effects of such a roughened surface for bone osteointegration in critical size rabbit defect. Our results demonstrate that resorbable biphasic calcium phosphate abrasive particles can be used to create titanium surface roughness. This grid blasting process increases surface roughness of titanium implants and offers a non cytotoxic surface for rapid and efficient osteointegration.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 361-363)

Pages:

1351-1354

Citation:

Online since:

November 2007

Export:

Price:

[1] Thomas K. A, Cook SD (1985), J Biomed Mater Res 19: 875-901.

Google Scholar

[2] Predecki P., Stephan JE., Auslaender BA., Mooney VL., Kirkland K. (1972), J Biomed Mater Res 6: 375-400.

DOI: 10.1002/jbm.820060506

Google Scholar

[3] Carlsson L., Rostlund T., Albrektsson B. (1988), Int J Oral Maxillofac Implants 3: 21-24.

Google Scholar

[4] Daculsi G., Laboux O, Legeros RZ., (2002) ITBM-RBM 23: 317-25.

DOI: 10.1016/s1297-9562(02)90000-8

Google Scholar

[5] Gbureck U. Masten A;, Probst J., Thull R. (2003) Mat Sci Eng 23: 461-5.

Google Scholar

[6] Esposito M., Hirsch JM., Lekholm U., Thomsen P. (1998) 106: 721-64.

Google Scholar

[7] Lincks J., Boyan BD., Blanchard CR., Lohmann CH., Liu Y., Cochran DL., Schwartz Z., (1998) Biomaterials 19: 2219-32.

Google Scholar

[8] Boyan BD., Sylvia VL., Liu Y., Sagun R., Cohran DL., Lohmann CH., Dean DD., Schwartz Z. (199) Biomaterials 20: 2305-10.

Google Scholar

[9] Deligianni DD., Katsala N., Ladas S., Sotiropoulou D., Amedee J., Missirlis YF. (2001) Biomaterials 22: 1241-51.

Google Scholar

[10] Anselme K., Bigerelle M., Dufresne E., Judas D., Ioost A., Hardouin P. (2000) J Biomed Mater Res 49: 155-166.

DOI: 10.1002/(sici)1097-4636(200002)49:2<155::aid-jbm2>3.0.co;2-j

Google Scholar

[11] Anselme K. (2000) Biomaterials 21: 667-81.

Google Scholar

[12] Wenneberg A., Albrektsson T., Andersson B. (1996) Int Oreal Maxillofac Implants 11: 3845.

Google Scholar

[13] Aebli N., Krebs J., Stich H., Schawalder P., Walton M., Schwenke D., Gruner H., Gasser B., Theis JC. (2003) J Biomed Mater Res 66A: 356-363.

DOI: 10.1002/jbm.a.10508

Google Scholar

[14] Citeau A., Guicheux J., Vinatier C., Layrolle P., Nguyen TP., Pilet P., Daculsi G. (2005) Biomaterials 26 : 3631-8.

DOI: 10.1016/j.biomaterials.2004.02.033

Google Scholar

[15] Daculsi G, Weiss P, Bourges X, Bretagne; (2004) Patent Biomatlante SAS Vigneux de Bretagne and INSERM and Université de Nantes. n°04 01151. 2004 06/02/(2004).

Google Scholar

[16] Goyenvalle E.,. Aguado E ,. Cognet, R,. Moreau F., Pilet P,. Bourges X ., Daculsi G. (2006) proceedings 19 international conference of the European Society for Biomaterials ESB.

Google Scholar