Mechanical and Thermal Characterization of FRCM-Matrices

Article Preview

Abstract:

Architectural heritage manifests both structural and energy deficiencies with respect to the requirements stated in the technical codes. Nowadays, among the possible strengthening solutions, it is of great interest the use of the fabric-reinforced cementitious matrix (FRCM), which consists in a fibrous mesh grid embedded in a mortar (inorganic matrix). The FRCMs may ensure simultaneous advantages recognizable in static and insulation improvements. Thus, it is reasonable to design the FRCM-application by considering both the mechanical and the energy properties. In this scenario, the goal of the research is to experimentally determine the mechanical and the thermal capacities of FRCM-matrices. In such way, the correlation between the proportion of the constituents and the effectiveness (structural and energetic) of the system is investigated. In detail, the FRCM-matrices were characterized by compressive and flexural tests, as well as, by thermal conductivity measurements. In particular, different percentages in volume of aggregates were replaced with recycled materials (i.e. waste tire rubber), in order to quantify the possible decrease in the mechanical strength and the enhancement of the thermal insulation with respect to the substitution rates.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

189-194

Citation:

Online since:

August 2019

Export:

Price:

* - Corresponding Author

[1] Ministerial Decree 17 January 2018, NTC 2018. Norme Tecniche per le Costruzioni, Ministero delle Infrastrutture. Information on http//www.cslp.it [In Italian].

Google Scholar

[2] Ministerial Decree 26 June 2015. Applicazione Delle Metodologie di Calcolo Delle Prestazioni Energetiche e Definizione Delle Prescrizioni e dei Requisiti Minimi Degli Edifici; n. 162, 15-07-2015—Suppl. Ordinario n. 39; Gazzetta Ufficiale: Rome, Italy, (2015).

Google Scholar

[3] ISCARSAH – International Scientific Committee for Analysis and Restoration of Structures of Architectural Heritage - Recommendations for the analysis, conservation and structural restoration of architectural heritage,, Barcelona, 5 June 2005, 39 pp.

DOI: 10.23967/sahc.2021.290

Google Scholar

[4] G. Misseri, L. Rovero, G. Stipo, S. Barducci, V. Alecci, M. De Stefano. Experimental and analytical investigations on sustainable and innovative strengthening systems for masonry arches. Composite Structures 210 (2000) 526-537.

DOI: 10.1016/j.compstruct.2018.11.054

Google Scholar

[5] A. Cascardi, F. Micelli, M.A. Aiello. Analytical model based on artificial neural network for masonry shear walls strengthened with FRM systems. Composites Part B: Engineering 95 (2016) 252-263.

DOI: 10.1016/j.compositesb.2016.03.066

Google Scholar

[6] A. Cascardi, F. Longo, F. Micelli, & M.A. Aiello. Compressive strength of confined column with Fiber Reinforced Mortar (FRM): New design-oriented-models. Construction and Building Materials 156 (2017) 387-401.

DOI: 10.1016/j.conbuildmat.2017.09.004

Google Scholar

[7] A. Cascardi, M.A. Aiello, T. Triantafillou. Analysis-oriented model for concrete and masonry confined with fiber reinforced mortar. Materials and Structures 50.4 (2017) 202.

DOI: 10.1617/s11527-017-1072-0

Google Scholar

[8] M. Fossetti, G. Minafò, Comparative experimental analysis on the compressive behaviour of masonry columns strengthened by FRP, BFRCM or steel wires. Compos. B Eng. 112 (2017) 112–124.

DOI: 10.1016/j.compositesb.2016.12.048

Google Scholar

[9] A. Cascardi, F. Micelli, & M.A. Aiello (2018). FRCM-confined masonry columns: experimental investigation on the effect of the inorganic matrix properties. Construction and Building Materials, 186, 811-825.

DOI: 10.1016/j.conbuildmat.2018.08.020

Google Scholar

[10] G.E. Thermou, I. Hajirasouliha, Compressive behaviour of concrete columns confined with steel-reinforced grout jackets. Compos. B Eng. 138 (2018) 222–231.

DOI: 10.1016/j.compositesb.2017.11.041

Google Scholar

[11] X. Shu, B. Huang. Recycling of waste tire rubber in asphalt and portland cement concrete: An overview. Construction and Building Materials 67 (2014) 217-224.

DOI: 10.1016/j.conbuildmat.2013.11.027

Google Scholar

[12] L. Ombres, S. Verre. Shear Performance of FRCM Strengthened RC Beams. Special Publication 324 (2018) 7-1.

Google Scholar

[13] S. Babaeidarabad, F. De Caso, A. Nanni. URM walls strengthened with fabric-reinforced cementitious matrix composite subjected to diagonal compression. Journal of Composites for Construction. 18.2 (2013) 04013045.

DOI: 10.1061/(asce)cc.1943-5614.0000441

Google Scholar

[14] V. Alecci, F. Focacci, L. Rovero, G. Stipo, M. De Stefano. Extrados strengthening of brick masonry arches with PBO–FRCM composites: Experimental and analytical investigations. Composite Structures 149 (2016) 184-196.

DOI: 10.1016/j.compstruct.2016.04.030

Google Scholar

[15] Consiglio Superiore dei Lavori Pubblici (2018). Linea Guida per la identificazione, la qualificazione ed il controllo di accettazione di compositi fibrorinforzati a matrice inorganica (FRCM) da utilizzarsi per il consolidamento strutturale di costruzioni esistenti. Available online: http//www.cslp.it (accessed on 31 December 2018). [In Italian].

DOI: 10.3221/igf-esis.12.04

Google Scholar

[16] I. Palomar, G. Barluenga, J. Puentes. Lime–cement mortars for coating with improved thermal and acoustic performance. Construction and Building Materials 75 (2015) 306-314.

DOI: 10.1016/j.conbuildmat.2014.11.012

Google Scholar

[17] S.R.L. Cunha, J.L. Aguiar, P. Soares, J. Azevedo, V. Ferreira, A. Tadeu.. Mortars with incorporation of PCM based in different binders: mechanical and thermal behavior. European Mortar Summit (2015) 63-74.

Google Scholar

[18] M.G. Gomes, I. Flores-Colen, F. da Silva, M. Pedroso. Thermal conductivity measurement of thermal insulating mortars with EPS and silica aerogel by steady-state and transient methods. Construction and Building Materials 172 (2018) 696-705.

DOI: 10.1016/j.conbuildmat.2018.03.162

Google Scholar

[19] A. Borri, M. Corradi, R. Sisti, C. Buratti, E. Belloni, E. Moretti. Masonry wall panels retrofitted with thermal-insulating GFRP-reinforced jacketing. Materials and Structures, 49.10 (2016) 3957-3968.

DOI: 10.1617/s11527-015-0766-4

Google Scholar

[20] T.C. Triantafillou, K. Karlos, K. Kefalou, E. Argyropoulou. An innovative structural and energy retrofitting system for URM walls using textile reinforced mortars combined with thermal insulation: Mechanical and fire behavior. Construction and Building Materials 133 (2017) 1-13.

DOI: 10.1016/j.conbuildmat.2016.12.032

Google Scholar

[21] M. Sassu, F. Stochino, F. Mistretta. Assessment Method for Combined Structural and Energy Retrofitting in Masonry Buildings. Buildings 7.3 (2017) 71.

DOI: 10.3390/buildings7030071

Google Scholar

[22] V. Manfredi, A. Masi. Seismic Strengthening and Energy Efficiency: Towards an Integrated Approach for the Rehabilitation of Existing RC Buildings. Buildings 8.3 (2018) 36.

DOI: 10.3390/buildings8030036

Google Scholar

[23] EN1745:2002. Masonry and masonry products. Methods for determining design thermal values.

Google Scholar

[24] UNI EN 1015-11:2007. Methods of test for mortar for masonry - Part 11: Determination of flexural and compressive strength of hardened mortar.

DOI: 10.3403/01905442u

Google Scholar

[25] D. Kuvandykova. A New Transient Method to Measure Thermal Conductivity of Asphalt, C-Therm Technologies (2010).

Google Scholar

[26] V.S. Fajardo, M.E. Torres, A.J. Moreno. Hydraulic and hygrothermal properties of lightweight concrete blocks with basaltic lapilli as aggregate. Construction and Building Materials 94 (2015) 398-407.

DOI: 10.1016/j.conbuildmat.2015.07.020

Google Scholar

[27] K. Pietrak, T.S. Wiśniewski. A review of models for effective thermal conductivity of composite materials. Journal of Power Technologies. 95.1 (2014) 14-24.

Google Scholar