Effect of the Calcination Time of Fish Bones in the Synthesis of Hydroxyapatite

Article Preview

Abstract:

In this work, a combination of methods for HAp synthesis is investigated. Fish bones were calcined at 900oC between 4h and 12h, followed by milling in a high-energy ball mill, by 2h and 4h at 300rpm. The obtained material was characterized by using techniques such as laser granulometry, X-ray diffraction, scanning electron microscopy (SEM) and atomic absorption spectroscopy. The performed analysis permitted us to obtain the Ca/P ratio, the morphology and the phase structure of hydroxyapatite particles powder.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 498-499)

Pages:

600-605

Citation:

Online since:

November 2005

Export:

Price:

[1] P. Gron, J.G. Vancampen, I. Lindstrom Human dental calculus: Inorganic and crystallographic composition,. Arch Oral Biol, 12: 89-91, (1967).

Google Scholar

[2] R. Z, Le Geros Variations in the crystalline components of human dental calculus, I. Crystallographic and spectroscopic methods of analyses. J. Dent Res: 53: 45-50, (1974).

DOI: 10.1177/00220345740530012801

Google Scholar

[3] R. Z. Le Geros, I.L. Shannon, The crystalline components of dental calculi: Human vs. dog,. J Dent. Res. 58: 2371-2377, (1979).

DOI: 10.1177/00220345790580120801

Google Scholar

[4] S. L. Rowles, The precipitation of whitlockite from aqueous solutions, Bull Soc. Chim: 1798-1802, (1968).

Google Scholar

[5] H. Schroeder, Formation and Inhibition of Dental Calculus, Vienna, Hubert, (1969).

Google Scholar

[6] H. S. Liu, T. S. Chin, L. S. Lai, S. Y. Chiu, K. H. Chung, C. S. Chang and M. T. Lui. Hydroxyapatite sinthesized by a simplified hydrothermal method,. Ceram. Int. 23, 19-25, (1997).

DOI: 10.1016/0272-8842(95)00135-2

Google Scholar

[7] E. Yang Pauchiu and T. H. Chin. Journal of Materials Science: Materials in Medicine, 4, 150- 158, (1993).

Google Scholar

[8] P.W. Brown, M. T. Fulmer. Journal of Materials Science In Medicine, 3, 299-305, (1992).

Google Scholar

[9] K. P. Li, T. Kokubo De Groot. Bioactive Ca10(PO4)6(OH)2-TiO2 Composite Coating Prepared by Sol-Gel Process, J. of Sol-Gel Science and Technology, 7, 27-30, (1996).

DOI: 10.1007/978-1-4613-1429-5_4

Google Scholar

[10] E. Lugschrider, M. Knepper, K.A. Gross. J. Thermal Spray Tech. 1(3), 215-222, (1992).

Google Scholar

[11] C.C. Bernt, K.A. Gross, Proc. Inter. Thermal Spray and Expo, 465-470, (1991).

Google Scholar

[12] Y. Osaka, Y. Miura, K. Takeuchi, M. Asada, K. Takahashi. J. Mat. Sci, 2, 51-55, (1991).

Google Scholar

[13] T. Yamamuro, L. L. Hench, J. Wilson. CRC Handbook of Bioactive Ceramics, II, 29-37, (1990).

Google Scholar

[14] M. M. A. Ramselaar, F. C. M. Driessens, W. Kalk. Biodegradation of four calcium phosphate ceramic; in vivo rates and tissue interactions, Journal of Materials Science: Materials in Medicine, 2, 63-70, (1991).

DOI: 10.1007/bf00703460

Google Scholar

[15] S. Joschek, B. Nies, R. Krotz, A. Göpferich. Chemical and physicochemical characterization of porous hydroxyapatite ceramics made of natural bone, Biomaterial, 21, 1645-1658, (2000).

DOI: 10.1016/s0142-9612(00)00036-3

Google Scholar

[16] R. Z. Le Geros, Calcium Phosphates in Oral Biology and Medicine, Monographs in Oral Science, vol. 15, Ed. Howard M. Myers, San Francisco, California, 24-38, (1991).

Google Scholar

[17] E. Lugscheider, M. Knepper, K.A. Gross, Proc. Inter. Thermal Spray and Expo, 459-464, (1992).

Google Scholar

[18] C.C. Silva, D. Thomazini, A. G. Pinheiro, F. Lanciotti Jr, J. M. Sasaki, J.C. Góes A. S. B. Sombra. Optical properties of hydroxyapatite obtained by mechanical alloying, J. of Physics and Chemistry of Solids 63, 1745-1757, (2002).

DOI: 10.1016/s0022-3697(01)00262-1

Google Scholar