Resonance Frequency Change in Microcantilever-Based Sensor due to Humidity Variation

Article Preview

Abstract:

Microcantilever-based sensors have attracted interest in the last decade because of their small size, rapid detection and high sensitivity. This sensor can be applied in the many fields, i.e. physics, chemistry, biology, biochemistry, medical, and environment. In this paper, we describe microcantilever-based sensor for environmental monitoring, especially for a humidity detection. This sensor was operated in dynamic mode where a change in mass or spring constant of the microcantilever provides the resonance frequency change. Here, a change of humidity is detected by the resonance frequency and the amplitude changes. It is found that the increase in the humidity causes the decreasing the resonance frequency but increasing the amplitude. This result opens up the possibility of the humidity detection using microcantilever-based sensor.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

176-182

Citation:

Online since:

January 2013

Export:

Price:

[1] R. Raiteri, M. Grattarola, H. Butt, P. Skladal, Micromechanical cantilever-based biosensor, Sens. Actuators B 79 (2001) 115-126.

DOI: 10.1016/s0925-4005(01)00856-5

Google Scholar

[2] S.K. Vashist, A review of Microcantilevers for Sensing Applications, J. Nanotechnol. 3 (2007) 1-15.

Google Scholar

[3] S. Dohn, R. Sandberg, W. Svendsen, A. Boisen, Enhanced functionality of cantilever based mass sensors using higher modes, Appl. Phys. Lett. 86 (2005) 233501.

DOI: 10.1063/1.1948521

Google Scholar

[4] N.J.R. Muniraj, MEMS based humidity sensor using Si cantilever beam for harsh environmental conditions, MicrosystTechnol 17 (2011) 27-29.

Google Scholar

[5] J.H. Kim, S.M. Hong, B.M. Moon, K. Kim, High-performance capacitive humidity sensor with novel electrode and polyimide layer based on MEMS technology, MicrosystTechnol 16 (2010) 2017-2021.

DOI: 10.1007/s00542-010-1139-0

Google Scholar

[6] J.H. Kim, B.M. Moon, S.M. Hong, Capacitive humidity sensors based on a newly designed interdigitated electrode structure, MicrosystTechnol 18 (2012) 31-35.

DOI: 10.1007/s00542-011-1373-0

Google Scholar

[7] A. Boisen, J. Thaysen, H. Jensenius, O. Hansen, Environmental sensors based on micromachined cantilevers with integrated read-out, J. Ultramic. 82 (2000) 11-16.

DOI: 10.1016/s0304-3991(99)00148-5

Google Scholar

[8] H. Sone, H. Okano, S. Hosaka, Picogram mass sensor using piezoresistive cantilever for biosensor, Jpn. J. Appl. Phys. 43 (7B) (2004) 4663-4666.

DOI: 10.1143/jjap.43.4663

Google Scholar

[9] H.P. Lang, R. Berger, C. Andreoli, J. Brugger, M. Despont, P. Vettiger, F. Battiston, J.P. Ramseyer, E. Meyer, T. Mezzacasa. L. Scandella, H.J. Guntherodt, Ch. Gerber, J.K. Gimzewski, A chemical sensor based on a micromechanical cantilever array for the identification of gases and vapors, Appl. Phys. A 66(1998)S61-S64.

DOI: 10.1007/s003390051100

Google Scholar

[10] R. Nuryadi, S. Sutikno, Detection of Ultrasmall Interaction Atomic Force, J. Nanosains&Nanoteknologi 2(1) (2009) 10-12.

Google Scholar

[11] H. Sone, Y. Fujinuma, S. Hosaka, Picogram Mass Sensor Using Resonance Frequency Shift of Cantilever, Jpn. J. Appl. Phys. 43 (2004) 3648-3651.

DOI: 10.1143/jjap.43.3648

Google Scholar