Enhancement of Poly(9,9'-di-n-octylfluorenyl-2.7-diyl) Optoelectronic Properties in Novel Conjugated Polymer/Laser Dye Hybrid OLEDs

Article Preview

Abstract:

The effect of laser dye (Fluorol 7GA) content on the optoelectronic properties of Poly ( 9,9'-di-n-octylfluorenyl-2.7-diyl) conjugated polymer (PFO) based OLEDs has been investigated. The PFO/Fluorol 7GA hybrids with weight ratios between 0.1 and 5 wt. % were prepared using the solution blending method. The blends were deposited on ITO (Indium Tin Oxide) substrate using spin-coating technique. Thin layer of aluminum was deposited on top of the films to act as electrode. Absorption and photoluminescence techniques were used to investigate the energy transfer in the blend. The device performance was investigated in terms of electroluminescence, luminance, luminance efficiency and color measurements. The Förster energy transfer occurred in the blends as evidence from optical spectroscopy and average distance between donor and acceptor molecules. The optimum ratio was 0.5 wt. % where highest enhancement in OLEDs performance was observed. These were attributed to the synchronize effect of efficient energy transfer from PFO to Fluorol 7GA and carrier trapping processes.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

281-288

Citation:

Online since:

May 2013

Export:

Price:

[1] G. Bernardo, A. Charas, J. Morgado, J. Phys. Chem. Solids, 71 (2010) 340-345.

Google Scholar

[2] J. Lu, Y. Tao, M. D'Iorio, Y. Li, J. Ding, M. Day, Macromol., 37 (2004) 2442-2449.

Google Scholar

[3] J.H. Kim, M.S. Liu, A.K.Y. Jen, B. Carlson, L.R. Dalton, C.-F. Shu, R. Dodda, Appl. Phys. Lett., 83 (2003) 776-778.

Google Scholar

[4] H.-J. Su, F.-I. Wu, C.-F. Shu, Y.-L. Tung, Y. Chi, G.-H. Lee, J. Polym. Sci., Part A: Polym. Chem., 43 (2005) 859-869.

DOI: 10.1002/pola.20569

Google Scholar

[5] B.A. Al-Asbahi, M.S. Alsalhi, A.S. Al-Dwayyan, M.H. Haji Jumali, J. Lumin., 132 (2012) 386-390.

DOI: 10.1016/j.jlumin.2011.08.039

Google Scholar

[6] A.R. Buckley, M.D. Rahn, J. Hill, J. Cabanillas-Gonzalez, A.M. Fox, D.D.C. Bradley, Chem. Phys. Lett., 339 (2001) 331-336.

DOI: 10.1016/s0009-2614(01)00359-1

Google Scholar

[7] J. Liu, Y. Shi, Y. Yang, Appl. Phys. Lett., 79 (2001) 578-580.

Google Scholar

[8] A.A. Shoustikov, Y. Yujian, M.E. Thompson, IEEE J. Sel. Top. Quant. , 4 (1998) 3-13.

Google Scholar

[9] D.F. O'Brien, C. Giebeler, R.B. Fletcher, A.J. Cadby, L.C. Palilis, D.G. Lidzey, P.A. Lane, D.D.C. Bradley, W. Blau, Synth. Met., 116 (2001) 379-383.

DOI: 10.1016/s0379-6779(00)00441-0

Google Scholar

[10] Q. Niu, J. Peng, Y. Zhang, B. Liang, Synth. Met., 161 (2011) 2149-2153.

Google Scholar

[11] Q. Niu, Y. Zhang, Y. Wang, X. Wang, M. He, Chin. Sci. Bull., 57 (2012) 3639-3643.

Google Scholar

[12] T. Virgili, D.G. Lidzey, D.D.C. Bradley, Synth. Met., 111–112 (2000) 203-206.

Google Scholar

[13] G.A. Kumar, V. Thomas, G. Jose, N.V. Unnikrishnan, V.P.N. Nampoori, J. Photochem. Photobiol. A: Chem., 153 (2002) 145-151.

Google Scholar

[14] C. Schweitzer, R. Schmidt, Chem. Rev., 103 (2003) 1685-1757.

Google Scholar

[15] A. Gilbert, J.E. Baggott, Essentials of molecular photochemistry, CRC Press1991.

Google Scholar

[16] H.L. Chen, Y.F. Huang, T.S. Lim, C.H. Su, P.H. Chen, A.C. Su, K.T. Wong, T.C. Chao, S.I. Chan, W. Fann, Phys. Chem. B, 113 (2009) 8527-8531.

DOI: 10.1021/jp901556v

Google Scholar

[17] B. Arredondo, B. Romero, A. Gutiérrez-Llorente, A.I. Martínez, A.L. Álvarez, X. Quintana, J.M. Otón, Solid-State Electron., 61 (2011) 46-52.

DOI: 10.1016/j.sse.2011.02.004

Google Scholar

[18] Z. Chen, D. Ma, Mater. Sci. Eng. B, 141 (2007) 71-75.

Google Scholar

[19] S.-N. Hsieh, T.-Y. Kuo, P.-C. Hsu, T.-C. Wen, T.-F. Guo, Mater. Chem. Phys., 106 (2007) 70-73.

Google Scholar

[20] Y. Shao, Y. Yang, Appl. Phys. Lett., 86 (2005) 073510-073513.

Google Scholar